JAUS Tool Set

User’s Guide

INTEROPERABILITY FOR UNMANNED SYSTEMS

tool set

&1Aus

Table of Contents

1 ABOUT THIS GUIDE ...ttt ettt teee ettt e et ee et ee et seee e s et es e s es e s ss e s ss e s ss et s s s s e s e sessseseensesennnnnnnes 13
1.1 WHO SHOULD USE [T .ttt ettt ettt e e e s e e e e e e e s e s e 14
1.2 TYPOGRAPHICAL CONVENTIONSuuttiiiiiieeiiaiireeetetesssansreeereaesssasnnneeene e e s s sssrnreeeneeesesnnnnneees 14

2 INTRODUGCTION. ..ttt s 16
2 T O 1Y/ =V ST 16
p N U = o] ST 17
2.3 SCOPE ..ttt e e e s e e s 17
24 REFERENCES ... s 18
25 GLOSSARY AND TERMINOLOGYuuittitieeieeesesitreseeeteeesassssbeseeeaeeasassssbeseeeseeessassnnneeeneseseannnennees 18

3 JTS SYSTEM DESCRIPTION ... s 21
3.1 KEY FEATURES ... s 21
3.2 ENVIRONMENT Lttt r e e e s s s bbb e e e e e s s s bbb e e e s e e e s s ser b b e e e n e e e e s 21
3.3 WORKFLOWiiitttiiiiie ettt e e e e e e e s s e s a e e et e e s s e s bbb a e e e e e s s s e s bbb e e e n e e e s s saarnn 23

4 INSTALLING AND GETTING STARTED. ..o 25
4.1 OBTAINING AND INSTALLING JTS ...ttt 25
4.2 STARTING THE SYSTEM (SOURCE DISTRIBUTION ONLY) ..etieiiiiieeiiiiieeeeriiete et e st e e 29
4.3 ANT TARGETS (SOURCE DISTRIBUTION ONLY) teiuititieiiititeeeiitieeessiteee e ettt e et e et e e s sineee e snenas 30
4.4 GRAPHICAL USER INTERFACE OVERVIEWutttittiiiiiirtreeiteeeseiatsneeeeeeesssainsnneeeeeesssssrnnneeeaeennns 31
4.5 SERVICE CREATION OVERVIEWuuttiiiiiieeeisiitteseteeeessa sttt eaesasassssnsseeeae e e s s sssnnnneeeeeesasnnnnneees 33

5 PERSISTENCE ... s 35
51 RECURSIVE DELETION. ...ciiiiiiiiiiititeiie ittt s et e e s s bbb een e e e s s na e e a e e e 35
5.2 OVERWRITE MESSAGE DEFINITIONScttiiiiiiiiiriiiiiie e ittt e e s e e s ee e e s s s sannnnee s 38
5.3 EDITING LISTS ittt e e et e e e s s s er e e e e s s e e e e e e e e as 38

B VALIDATION .. s 40

T A SHORT TOUR .. s 41

JTS Users Guide, Ver 2.0 Copyright 2013 Page 2 of 265

tool set

& 1AUS

7.1 CREATE A COMPONENT SPECIFICATION ...ciiiitirirettreessesiirnneeeneessssisrsnneese e s s s sssnnneeenesssssnnnnneees 41
7.2 AUTO-GENERATE A COMPONENT IMPLEMENTATIONcitiiiiiiiiiriniieresssesiirneeeene s s s snnnnnenesesssnnnns 42
7.3 COMPILE AND EXECUTE A COMPONENTottitieititianeesteaseentesneeneesseaseeseesseeneesseaseensesseensessesnesses 44
8 CREATING YOUR FIRST SERVICE: PING ... 46
8.1 IDENTIFY THE INTERFACE ...teeutittateetesteeseentesueesteateaneeseeeseantesseanseseaseeseeaseeneesseaseensesseensesseanessees 46
8.2 DEFINING THE MESSAGE SET ...uutttiiiiiieiiiiittreeereee s st r e s e s s st n e e e s s s e e e e e e s e sainnrneeneee e s 48
8.3 DESCRIBE THE PROTOCOL .ttt sttt ettt a et e e e e s e e e e e s e e e e e e e e s 51
8.4 BUILD THE SERVICEtttittieetiaittte et e te e e sttt e e e e s st e e e s e s e et e e e s e s ern e et e e e e e snrnrneeeeeeneas 57
8.5 CREATE A COMPONENTcttttttet ettt tete e e s s sttt e e e s e ass s ee et eeeeaa s s b beee e et e e e s e asbrn s e e e eeeeseanannreneees 62
8.6 GENERATE C++ SOURCE AND INTEGRATE USER CODEcuvviiiiiiiiiiiiiiiiiie e 65
8.7 GENERATE JAVA SOURCE CODE AND INTEGRATE USER CODE........cccvvviiiieeiiiiiiiiicene e 68
8.8 GENERATE C# SOURCE CODE AND INTEGRATE USER CODEcociriiiiiie e 70
8.9 BUILD THE SYSTEM ...itttiiiiiiiiiiiiitie ittt e e r e e e s bbb e e s e e e s s b a e e e n e e e s 71
9 CREATING YOUR SECOND SERVICE: ADDING TWO NUMBERScccooiiiiiie 73
9.1 IDENTIFY THE INTERFACEututuriritiririnininininineeisneesns s s 73
0.2 IS DL IMPORT .ttt ettt ettt e e e e e et e et e e e e et e e e a e n e e e e e e e aanne 75
9.3 CREATING THE SERVICE SETS . .iiittitiitieeaia ittt et e e e s e sttt et e e e s e s e e e ae e e s s sssnn e e e e ee e s s e snnneneees 76
9.4 CREATE THE COMPONENTS ...ttttttieitisiiiriteeiie e s s s siibsserese s s s s e e e s e s s s s sbb e s e r e s e s e s s sbaraeeneaesssasannns 78
9.5 MODIFY THE C++ SERVER COMPONENTctttiiiiiiiiiiiiiiiiiiie et en e s e e n e e e sinnnaeene e 79
9.6 MODIFY THE C++ CLIENT COMPONENTuutttiiiiiie et r et e e s n e e sinnna e e e e e 82
9.7 MODIFY THE JAVA SERVER COMPONENT.....cutttiiiieiiiiititeiiie e st r e s e n e e siraraeene e 84
9.8 MODIFY THE JAVA CLIENT COMPONENTuutttttttetessiaittrereteaesssainsrseeneaessaasnnbneeeeeesssannnrneeeeeesens 87
9.9 MODIFY THE C# SERVER COMPONENTuutttttttetestiaittreeeteeesssaassrseeteeesssannsnneeeeeesssannnrneeeeeesens 88
9.10 MODIFY THE CH CLIENT COMPONENTuttttttteeessiitrrreteteessaassrssseesesssaasssnseeesesssassnrnsneeeesssannnes 91
9.11 COMPILING AND EXECUTING THE CLIENT AND SERVER........ciccuttiiiiieeeiniiiineirene s e e nennns 93

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 3 of 265

tool set

&1Aus

10 DEFINING MESSAGE ELEMENTS ... 96
L0.1 SIMPLE FIELDS .uutittatiestt st ettt atee et ete e e seeetee et aeeaseeateaseeseeeteeneeseeeseenbeaeeeneenbeaneensesaeaneeseeaneennens 96
10.2 COMPLEX FIELDS ...ccitiiiiiiittietit ettt e e s s sttt e e e e e st er e e e s e s e b b e e e e e aesesannan 104
10.3 COMPLEX FIELD EXAMPLEScitiiiiiiitiietii ettt e e st e e s e e e e e e s e saanne 109

11 DEFINING MESSAGES 117
11.1 REPORT GLOBAL POSE MESSAGE EXAMPLEuutiiiiiiiiiiiiiriiiiee e a e 119
11.2 REPORT IMAGE MESSAGE EXAMPLEccutiiieiiiitiiiieniesteeiesteeiee et nee st e e seeeee e eneeneesneenee e 122
11.3 REPORT DATA LINK STATUS MESSAGE EXAMPLEccutiuiiiiiaiieiesieeeesieeee e seee e seesnee e e e 125

12 DEFINING PROTOCOL BEHAVIOR ... 128
12,1 BEHAVIOR ELEMENTS ...iiiitttiiiiieeeieitite ettt e e s sttt e e e e e s st e e e e e e s s e et e e e s e s e s e e e e aaesesannnn 129
12.2 BEHAVIOR ELEMENT DEFINITION EDITING......cciiitttiiiieieetiiiireiiieee s e st er e e s e nsnnnneee e e e s snneee 134
12.3 AUTO-COMPLETION GUIDEeeiiiieiiiiititeeiteteesieissree e eee s s sans et e e e e e s san e e e e e e s e sassnnreeeeeaesenannnnns 137
12,4 DRAWING TIPS....utiiiiiieiiiiittie it e e ettt et e e ettt e e e e a1 e b e et e e e e et e s bbb e e et e e e s e sa s b e e eeaaeeesannnn 140
12,5 STATE MACHINE INHERITANCEciiiitttiiiiiie sttt n et s e e e s bbb e n e e e s s s aanans 144
12.6 REDOING THE LAYOUT OF IMPORTED PROTOCOL BEHAVIORcccciiiiiiiiiiiiiie i 146
12,7 KEYBOARD SHORTCUTS .. .utttiiiiiieiiiiiitiee it et s s sttt r e s s s st e e e e s s s bbb e s e n e e e s s s sbb e s e r e e e e e s annans 151

13 OTHER EXAMPLES ...t s 154
13.1 WAYPOINT DRIVER EXAMPLEueeiuiiitieiuieeieeteesteesteesseeaneeeseeesseessesssessnseanseenseessessseessssanseenseens 154
13.2 ENVIRONMENTAL SENSING EXAMPLEcottiiiiiiiitiiiiiteee et e e ee e e e s 155

14] Y o O PP PPPPPPPPPPPPPPPN 157
14.1 THE FIND COMMAND ...cciiiitttttiteteeese sttt e ee e e st e e e e s e sa b e e et e e e e e sa s s ree e e e e e s e saannnreeeeeeeeeaannnn 157
N © 1| [0 g =7 2T 1 F PSSP 159
LA.3 SMART LISTS iititiiiiiie ettt r e s e st e e e e s e s e bbb e et e e e e s s s bbb e e e raae s e s aaran 160
14,4 FILTERED LISTINGS ..ooiiiiiiittieiiie e sttt e e st e e e e s s s e et e e e e e s b b e e e r e e e e e saanan 160

15 JSIDL INPUT J OUTPUT L.ttt ettt e e e e ettt e e e e e s e s nnbeeeeaaeeeeaannne 162

16 TREE VIEW ...ttt e e e e ettt e s e e et et e tb b a e e e e et eesbananaeeeaees 164

JTS Users Guide, Ver 2.0 Copyright 2013 Page 4 of 265

tool set

& 1AUS

17 SOFTWARE FRAMEW ORK ..ottt ettt ettt e e e et et e eeeeeeeeeeeeseeaeseennes 165
17.1 TOPOLOGY OF THE GENERATED CODE.....ccciiiiiiittrtrereiessiiiirreeieeesssssssnesereeessssnsneseseaesssnnnnns 166
17.2 INHERITED SERVICES ...cuttutettttaseesteateanteateaseeatesseessesseasessaeeseansesseaneesseanesseesseensesseasesssesseeneenes 168
17.3 DIFFERENCES BETWEEN GENERATED C++, JAVA, AND CHooiiiiieiiiiiie e 169
17.4 ADDING PROTOCOL BEHAVIOUR: GUARDS AND ACTIONSeeveeueieeaneenteaneeseesseeeeseesseeseesneeneenes 169
17.5 SENDING MESSAGESciiiuttreiiieieeeieitiree et et e s s sttt r e e e s e s b et e e e e e s sa b e e et e e e s e s e na e e eneaesesannnn 170
17.6 SENDING INTERNAL EVENTS ...ciiiiiiiiiitiiieii ittt a e s e e n e e e s e naanan 172
17.7 TRIGGERING STATE TRANSITIONS......uutttrtittetiiairtreeeresesasasssreereesesssaassrssereeesssasnnrseeeesesssnnnnns 173
17.8 DEALING WITH MESSAGE DATA. ..ccuiiitiiiieiieeieestee ittt aneeesteesteesteesseesnseanteenseessessseesneeanseenseens 174
17.9 CONFIGURING THE RUN-TIME ENVIRONMENTctttiiiiiiiiiiiiiiiin et 179
L17.20 SUMMARY ..ottt e e e e s s s e e e e e e s e s e e r e e e s e n b a e e s 182

18 DOCUMENT GENERATOR ..., 183
18.1 DOCUMENT GENERATION USER INTERFACEcuutiiiiiiiiiiiiiiiiiiie e e 183
18.2 CUSTOM STYLIZATION DIRECTORIES.....0eutttieiiiaittreeeneeesasaassreeeeesesasaassrasesesesssasnnnneeeeeesssansnnns 185
18.3 DOCUMENTATION GENERATION-GENERAL BEHAVIORcocuttriiiiiiei ittt 186
18.4 XMLMIND XFC DEPENDENCY ...ccceiiiiuttteretetesaiaintreeesesesssasssnesesesesssassssssseeesesasasnsnssesesesssnnnnnns 187
18.5 BEHAVIOR DIAGRAMS IN GENERATED DOCUMENTATION......uuutiiiieieesiaitnrneeeeeesssannneeeneeesennnnnne 188
18.6 NAVIGATING LINEAR HTML AND WORD DOCUMENTATION......uvviiiieiiiiiiiririieeessnsrineeeneee s s ssinnne 188
18.7 NAVIGATING FRAMED HTML DOCUMENTATIONutiiiiiiiiiiiiiiiiiiieee s seiireeer e e s en e e 190

19 WIRESHARK PLUGIN .. s 192
19.1 INSTALLING JAUS PLUGHIN L.ttiiiiiiiiiiiiieiii it r e e e e 192
19.2 USING JAUS DISSECTOR ...ctteeiteieeaiaainiteeetatesasaaisstsseeesesssaasssbeseeeeesasaassbaeeteaesssassnsreneeeaesssaannes 192
19.3 THINGS TO KNOW ..iiiiiiiiiitieeitee e e e ittt et e e e sttt e e e e e s e et e e e e e s e aab e e et e e e e e aa b b beeeeeaeeeaannne 194

20 PROTOCOL VALIDATION . ..o 196
20,1 OVERVIEW. .ot iiiiiiiititiit ettt e e e e e st et e e e e e st e e et e e e e e s a e et e e e e e s e n bbb e e e r e e e e e naanan 196

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 5 of 265

&1Aus

tool set

20.2 ENVIRONMENT ..uiittitte et ateeteesteeteeteseeeeesteameesaeeteeneeaeeaseeaseameesaeeseansesaeeseensesseensesseaneeseeeseensens 196
120 TR T I X PP PP PP PPPPPPPPPPPPPR 196
20,4 WORKFLOW......eittitittte et ittt et e e ettt e e e e e s b e et e e e e e 4 e e et e e e s e s s b e e et et e e e s e ssnb e e e e eeesenannnn 197
20.5 INSTALLING AND GETTING STARTED......uuttttttieeiiiittreeereesssiairnreeeteessssssrnnseesesssssssnsseeesesssannnns 197
20.6 A PRACTICAL PROMELA EXAMPLEuttiiiiiiiiiiiiieeiie e e sttt e e e s a e s s s inrneeeae s nninnns 199
20.7 THINGS TO KNOW ..oiiiiiiiiiiiiitietit ettt e e st e e e e e s e st et e e e s e ss e e e e e eeeesaanan 212
21 COMPACT JSIDL AND ECLIPSE PLUG-IN ...ccciiiiiiiiiiiiiiieiieenenenennnes 226
211 OVERVIEW..iiiiiiiiiiiiiieieitteet et ettt et ettt ettt ettt eee ittt e eee et ee et et et ee e e e e eeseeeseeeeeeeeeseeeseseeeenenenenenennnennnnnennnrn 228
21,2 ENVIRONMENT ..ocittttitiie ettt st e e s e e e e s s s s bbb e e et e e s s s s bbb b e e e e e e s s s s bbb e e en e e e e s naanan 229
21.3 CJISIDL GRAMMARcttttiiiittttttttte e e ittt et e s e s b e et e e e s e s e b e be e et e e e s e s s s bee et et e e e saan b e e reeaeeeaaanne 229
214 ECLIPSE PLUGHIN ...ctttitiiiiiiiitt ettt ettt ettt e e e e e sttt e e e s e s e ettt e e e s e as b e e e e e e e e e sannnn 247
21.5 CJISIDL INTEGRATIONWITH JTS ..ottt e e e s 258
22 APPENDIX A — COMMAND LINE INPUT ... s 260
22.1 CODE GENERATOR ..ttitiiiiiiittttttiit i s s sttt s e e e s s s bbbt e e e s s s s b e e et e e e e s s s bbb b e e e s e s s s s sbb b e s eraaesssaarans 260
22.2 DOCUMENT GENERATOR ... cuttttitiieiiiiittiiiie e e s it e e r e e s s s s e e e e e s s s s bbb e e e s e s s s s bbb aaenaae s s s saanan 260
22.3 AUTOMATED TESTING FRAMEWORKuutiiiiiieiiiiitiiieiie e e st en e e s s e n e s s s ssbnasen e e e s ainans 262
23 APPENDIX B — AVAILABLE TYPES AND UNITS ... 263
23.1 SIMPLE NUMERIC TYPE ...iiiiittiitite e ettt ettt e e e e ettt e e e e e st et e e e e e s e e e e e e e e e annnn 263
23.2 FIELD FORMATSctttiitie ettt ettt ettt e ettt e e e e e et e et e e e s e s s e e et et e e e s e asb e e eeeaeeeaannnn 263
P2 T B U N - TP PPPTPPPPRPRN 263
24 PEOPLE AND COPYRIGHTS, 265

JTS Users Guide, Ver 2.0 Copyright 2013 Page 6 of 265

tool set

& 1AUS

Table of Figures

Figure 1: JTS Workflow

Figure 2: JTS Canvas

Figure 3: JTS Service Creation Hierarchy

Figure 4: Invoking Recursive Delete

Figure 5: Confirming Recursive Deletion

Figure 6: Validation message when incorrect input is detected

Figure 7 Protocol Definition for Ping Server

Figure 8: Protocol Definition for Ping Client

Figure 9: New Message Set Screenshot

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:

New Message Def Screenshot

Populated Message Def Screenshot

New Message Def Description Screenshot
New Body / Footer Screenshot

Message Def List Screenshot

New Protocol Screenshot

Protocol Ul Screenshot

Insert FSM Screenshot

Add Ready State Screenshot

Add Pseudo Start State Screenshot

Add Internal Transition Screenshot

Add Trigger Screenshot

Complete State Screenshot

Ping Client State Layout Screenshot

Ping Client State Layout With Trigger Screenshot

Protocol Behavior List Screenshot

24
31
33
36
37
40
47
48
49
49
50
50
51
51
52
52
53
53
54
54
55
56
56
57
57

JTS User’s Guide, Ver 2.0

Copyright 2013

Page 7 of 265

$JAUS

Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:

tool set

New Service Def Screenshot

New Input Set Creation Screenshot
New Input Set Screenshot

Input Set List Picker Screenshot

Ping Service Inputs Screenshot

New Service Def Populated Screenshot
Add Protocol Behavior Screenshot
New Service Def Populated Screenshot
Service Def List Screenshot

New Component Screenshot

New Component Populated Screenshot
New Service Set Screenshot

Add Service Def Screenshot

Pick Service Def Screenshot

Populated New Component Screenshot
Generate Source Screenshot

Select Code Generation Options Dialog
Ping Compile Command Screenshot
Addition Server FSM

Addition Client FSM

Import JSIDL Dialog

Entities After Addition Client/Server Import
New Addition Service Set Screenshot
Populated Addition Server Set Screenshot
Fixed Field Entry

Bit Field Entry

Variable Length Field Entry

Fixed Length String Entry

Variable Length String Entry

58
58
59
59
59
60
60
61
61
62
63
63
64
64
65
66
66
72
74
74
75
76
77
78
97
98
99
100
101

JTS Users Guide, Ver 2.0

Copyright 2013

Page 8 of 265

tool set

& 1AUS

Figure 55: Variable Format Field Entry 102
Figure 56: Array Entry 103
Figure 57: Variable Field Entry 104
Figure 58: Record Entry 105
Figure 59: List Entry 106
Figure 60: Sequence Entry 107
Figure 61: Variant Entry 108
Figure 62: New Array Example Screenshot 110
Figure 63: New Array Populated Screenshot 110
Figure 64: New Record Simple Fields Screenshot 111
Figure 65: New Record Add Array Screenshot 111
Figure 66: List Example Screenshot 112
Figure 67: Variant Example Screenshot 113
Figure 68: Sequence Example Graph 114
Figure 69: Sequence Example List Entry 114
Figure 70: Sequence Example Node Entry 115
Figure 71: Sequence Example Sequence Creation 115
Figure 72: New Message Def Screenshot 117
Figure 73: New Message Def Populated Screenshot 118
Figure 74: New Message Def Add Attributes Screenshot 118
Figure 75: Report Global Pose Field Example Screenshot 120

Figure 76: Report Global Pose Record List Picker Example Screenshot120
Figure 77: Report Global Pose Record Creation Example Screenshot 121
Figure 78: Report Global Pose New Body Screenshot 121
Figure 79: Report Global Pose Message Def Complete Screenshot 122

Figure 80: Report Image Example Fields Screenshot 123
Figure 81: Report Image Variable Length Field Screenshot 124
Figure 82: Report Image Record Creation Screenshot 124

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 9 of 265

tool set

/ JAUS

Figure 83: Report Image Message Creation Example Screenshot 125
Figure 84: Report Data Link Bit Field Creation Screenshot 126

Figure 85: Report Data Link Enumerated Values Creation Screenshot126

Figure 86: Report Data Link New Record Creation Screenshot 127
Figure 87: Report Data Link New Message Creation Screenshot 127
Figure 88: Protocol Behavior User Interface 129
Figure 89: Auto-Complete Example after typing ‘ev 137
Figure 90: Case-Sensitive Auto-Completion 138
Figure 91: Selection of Auto-Completion Suggestion 138
Figure 92: Auto-Completion of a Guard Condition 138
Figure 93: Resolving a Guard Condition 139
Figure 94: Auto-Completion of an Action 139
Figure 95: Auto-Completion Results 140
Figure 96: Tooltips 141
Figure 97: Moving and Resizing Protocol Objects 142
Figure 98: Moving Protocol Object Labels 142
Figure 99: Protocol Editor Undo Icon 143

Figure 100: Protocol Trigger Abbreviated and Expanded Transition Labels 143

Figure 101: Entering a State Group 144
Figure 102: Defining Inheritance 145
Figure 103: Inherited States as Red Read-Only States 146
Figure 104: Default Layout After Service Import 147
Figure 105: Collapsing and Expanding States 148
Figure 106: Moving States into Parent States 149
Figure 107: Before and After Reorganizing States 150
Figure 108: Fully Re-Organized State Machine 151
Figure 109: Find Command Screenshot 157
Figure 110: Referencing Elements Search Screenshot 158
Figure 111: Find Records Screenshot 159

JTS Users Guide, Ver 2.0 Copyright 2013 Page 10 of 265

US

tool set

(,QJA

Figure 112:
Figure 113:
Figure 114:
Figure 115:
Figure 116:
Figure 117:
Figure 118:
Figure 119:
Figure 120:
Figure 121:
Figure 122:
Figure 123:
Figure 124:
Figure 125:
Figure 126:

Quick Search with Auto-Completion Guide
Filtered Views

Polymorphic Query Options

Importing a JSIDL Service Definition Written in XML
Import Dialog

Exporting a Service Definition to XML

Tree View in a JTS Internal Frame

Protocol Behavior for Example OCU

Generate Documentation via ServiceSet Window
Generate Documentation via Context Menu
Output Options Dialog

HTML Documentation Generation

HTML Documentation Output

Wireshark Network Analyzer

Wireshark Protocol Traces with Packet Dissection

Figure 127 Generate PROMELA Source Code

Figure 128 Addition Service Set Created

Figure 129 Select Location for Generated Code

Figure 130

jSpin 5.0

Figure 131 Turning Off End State Checking

Figure 132
Figure 133
Figure 134
Figure 135
Figure 136
Figure 137

Setting Pan Options

Setting the Statement Width for jSpin
Setting Statement Width Dialog

Run Verify on Addition Example
Output from Random Simulation

Capturing Raw Output

Figure 138 Raw Data Output

Figure 139 JSIDL Nested States

160
161
161
162
162
163
164
165
184
184
185
190
191
193
194
198
199
200
205
206
206
207
207
208
209
210
211
216

JTS User’s Guide, Ver 2.0

Copyright 2013

Page 11 of 265

file:///C:/JTS/trunk/JAUSToolset/GUI/doc/JTS_UsersGuide.docx%23_Toc310501237

tool set

&1Aus

Figure 140 Simple State Machine with Nested States 217
Figure 140 Simple State Machine with Nested States 217
Figure 141 PROMELA Simplification of Nested States 218
Figure 142 JSIDL Push and Pop Transitions 221
Figure 142 JSIDL Push and Pop Transitions 221

Figure 143 PROMELA Simplification of Push and Pop Transitions 222

Figure 144:

CJSIDL Eclipse Plug-in

Figure 145 CJSIDL Editor Window

Figure 146:
Figure 147:
Figure 148:
Figure 149:
Figure 150:
Figure 151:
Figure 152:
Figure 153:
Figure 154:
Figure 155:
Figure 156:

Eclipse Plug-in JTS Menu

CJSIDL Plug-in Code Generator
CJSIDL Plug-in Document Generator
CJSIDL Plug-in Export to JSIDL
CJSIDL New Window

CJSIDL New Empty Project Wizard
CJSIDL New Stub Project Wizard
CJSIDL New Imported Project Wizard
CJSIDL New File Wizard

Importing CJSIDL to JTS

Exporting CJSIDL from JTS

247
248
249
250
251
251
252
253
254
255
256
258
259

JTS Users Guide, Ver 2.0

Copyright 2013

Page 12 of 265

file:///C:/JTS/trunk/JAUSToolset/GUI/doc/JTS_UsersGuide.docx%23_Toc310501247
file:///C:/JTS/trunk/JAUSToolset/GUI/doc/JTS_UsersGuide.docx%23_Toc310501248
file:///C:/JTS/trunk/JAUSToolset/GUI/doc/JTS_UsersGuide.docx%23_Toc310501249
file:///C:/JTS/trunk/JAUSToolset/GUI/doc/JTS_UsersGuide.docx%23_Toc310501250
file:///C:/JTS/trunk/JAUSToolset/GUI/doc/JTS_UsersGuide.docx%23_Toc310501251

tool set

& 1AUS

1 About this guide

This document is divided into the following chapters:

Chapter 1, “About this Guide”.

Chapter 2, “Introduction” gives an overview of the key features.

Chapter 3, “JTS System Description”, explains requirements and structure
Chapter 4, "Installation and Getting Started", describes first steps with JTS.
Chapter 5, “Persistence”

Chapter 6, “Validation”

Chapter 7, “A Short Tour" is a quick- start guide that describes how a complete client-

server implementation can be built in under 10 minutes using JTS.

Chapter 8, “Creating your First Service: Ping”, describes how to build the simplest

single Component application.

Chapter 9, “Creating Your Second Service: Addition”, describes how to create a

multi-component client/server application.

Chapter 10, “Defining Message Elements”, describes how to create various message
elements through the JTS GUI.

Chapter 11, "Defining Messages", describes how to composite message elements

into message definitions.

Chapter 12, “Defining Protocol Behavior”, creating application behavior with the JTS

Finite State Machine editor.

Chapter 13, “Other Examples”, details a Waypoint Driver example and an

Environmental Sensing example

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 13 of 265

tool set

&1Aus

e Chapter 14, "Search", describes how to use the advanced search capabilities built
into JTS10, “Defining a Service Definition”, Describes how a Service Definition is put

together.
e Chapter 15, “JSIDL Input/Output”
o Chapter 16, “Tree view”

e Chapter 17, “Software Framework", describes the generated code and how to modify

it, and how to run the communications component.
e Chapter 18, “Document Generator”
e Chapter 19, “Wireshark Plugin”

e Chapter 20, “Protocol Validation”

1.1 Who Should Use It

This guide is intended for users with different degrees of knowledge and experience with
JAUS/AS-4 and the JAUS Tool Set:

e System Designers: System designers can use JTS to specify JAUS Components
and Service Definitions.

e Software Developers: Software developers can use JTS to implement JAUS
compliant components and services. Software developers can also extend the
functionality of JTS to meet their (or the industry’s) specific needs. Software
developers who wish to extend JTS functionality are encouraged to read the JTS

Developer's Guide, included within the JTS distribution.

o Software Testers: Software testers can use the runtime monitoring tool Wireshark
along with the plugin provided (see Section 19) in JTS to monitor and analyze

message exchanges in real time.

1.2 Typographical Conventions

This document uses the following typographical conventions:

JTS Users Guide, Ver 2.0 Copyright 2013 Page 14 of 265

tool set

& 1AUS

e Command and option names appear in bold type in definitions and examples. The

names of directories, files, machines, partitions, and volumes also appear in bold.

e Variable information appears in italic type. This includes user-supplied information on

command lines.

|Screen output and code samples appear in monospace type.

In addition, the following symbols appear in command syntax definitions.
e Square brackets [] surround optional items.
e Angle brackets < > surround user-supplied values.
e Percentage sign % represents the regular command shell prompt.

e Pipe symbol | separates mutually exclusive values for an argument.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 15 of 265

tool set

/ JAUS

2 Introduction

2.1 Overview

The JAUS Tool Set (JTS) is a set of open source software specification and development tools
accompanied by an open source software framework to develop Joint Architecture for
Unmanned Systems (JAS) the design and development of JAUS* compliant implementations for
simulations and control of robotic components per SAE-AS4 standards. JTS consists of the

components below:

GUI based Service Editor: The Service Editor (referred to as the GUI in this document)
provides a user friendly interface with which a system designer can specify and analyze formal
specifications of Components and Services defined using the JAUS Service Interface Definition
Language (JSIDL) [5684].

Validator: A syntactic and semantic validator provides on-the-fly validation of specifications
entered (or imported) by the user with respect to JSIDL syntax and semantics is integrated into
the GUI.

Specification Repository: A repository (or database) that is integrated into the GUI that allows

for the storage of and encourages the reuse of existing formal specifications.

Code Generator: The Code Generator automatically generates C++, Java, or C# code that has
a 1:1 mapping to the formal specifications. The generated code includes all aspects of the
service, including the implementations of marshallers and unmarshallers for messages, and
implementations of finite state machines for protocol behaviors that are effectively decoupled

from application behavior.

Document Generator: The Document Generator automatically generates documentation for

sets of Service Definitions. Documents may be generated in several formats.

Software Framework: The software framework implements the transport layer specification
AS5669A [5669A], and provides the interfaces necessary to integrate the auto-generated C++,

Java, and C# code with the transport layer implementation.

! Joint Architecture for Unmanned Systems - now under the auspices of SAE-AS4 is a two-layer
architecture for robots.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 16 of 265

¢ JAUS

tool set

Wireshark Plugin: The Wireshark plugin implements a plugin to the popular network protocol
analyzer called Wireshark. This plugin allows for the live capture and offline analysis of JAUS

message-based communication at runtime(http://www.wireshark.org/).

Protocol Validation: The protocol validation consists of generating PROMELA (Protocol Meta
Language) source code. Together with user added code, this produces a model of the main
protocol for a service set. The model is then interpreted by SPIN (Simple PROMELA Interpreter)
and used for validating the model.

2.2 Purpose

JTS has been designed and developed for the purpose of expediting the development of robust
JAUS compliant implementations either from the ground up or through the integration of JAUS
interfaces with existing (possibly proprietary) implementations. The developers of JTS believe
that this tool set will reduce the time and subsequent cost required to specify, implement and
test JAUS compliant systems to a fraction of the time and cost required to do the same
manually.

This document provides a detailed description of JTS functionality, and instructions for its use.
This includes step-by-step instructions for building services, with additional guidance for
accessing more advanced features. This guide covers importing and exporting service
definitions and automatic generation of C++, Java, and C# code. The document also touches on
some concepts and the philosophy on which JTS is built. Finally, a notional workflow is provided
to show how the JAUS Tool Set can be used within new or existing programs to quickly create

standards-compliant services.

Readers interested in information about the overall architecture of the toolset, modifying the
source code or becoming involved in bug fixes and patches should consult the JTS Developer’s
Guide.

2.3 Scope

This document is intended for the users of the JAUS Tool Set. Users need not have a complete

understanding of SAE JAUS, but some familiarity is expected. In addition, a technical

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 17 of 265

http://www.wireshark.org/

tool set

&1Aus

background in the design, development, and integration of distributed software components for

unmanned systems is assumed.

2.4 References

The SAE JAUS documents are available from SAE International, 400 Commonwealth Drive,
Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970
(outside USA), Web address: www.sae.org. While detailed knowledge of this standard is not
required to use the JAUS Tool Set, some familiarity with these documents will make the software

tool easier to use.

[5665] AIR5665 Architecture Framework for Unmanned Systems,
[5669A] AS5669A JAUS Transport Specification, Revision A
[5684] AS5684 JAUS Service Interface Definition Language
[5710] AS5710 JAUS Core Service Set

2.5 Glossary and Terminology

2.5.1 Glossary

API: Application Programming Interface

ASCIIl: American Standard Code for Information Interchange
BLOB: Binary Large Object

ID: Identifier

JAUS: Joint Architecture for Unmanned Systems
JSD: JAUS Service Definition

JSIDL: JAUS Service (Interface) Definition Language
PROMELA: Protocol Meta Language

RA: (JAUS) Reference Architecture

SMC: State Machine Compiler

SPIN: Simple PROMELA Interpreter

UML: Unified Modeling Language

URL: Uniform Resource Locator

URN: Uniform Resource Name

URI: Uniform Resource Identifier

UUID: Universally Unique Identifier

XML: Extensible Markup Language

JTS Users Guide, Ver 2.0 Copyright 2013 Page 18 of 265

http://www.sae.org/

/ JAUS

tool set

2.5.2 Common Terms
The JAUS Tool Set and associated documentation uses several terms defined by the SAE JAUS

standard. For convenience, these definitions are summarized here.

Component: A component is a software element in a JAUS system. A component that provides
a service is called a server. A component that uses one or more services is called a client.

[AS5710] Although not required, a component is typically a process.

Node: A node is an independent and distinct unit within a subsystem and is made up of a logical

grouping of components. Although not required, a node is typically a single computer/processor.

Subsystem: A subsystem is an independent and distinct unit within a system and is made up of
a logical grouping of nodes. Although not required, a subsystem is typically a unique distributed

device or platform

Service Definition: A Service Definition is a textual and/or XML representation of a service
interface. Any Service Definition shall conform to the JAUS Service Interface Definition
Language Schema defined in AS5684 [5684]. Each Service Definition contains a service
identifier, version, message set, protocol, and associated information. [AS5710]

Service Identifier: A service identifier is a globally unique string that identifies a specific Service
Definition. Since a Service Definition mandates a message set and associated protocol, the
service identifier and version number are sufficient to uniquely identify the service interface.
Service Identifiers are based on a unique URI, and are specified for each service published by
SAE AS-4.

JAUS Identifier: The JAUS Identifier is a 4-byte unsigned integer that corresponds to a
communication end point. Messages are sent to, and received from, a JAUS Identifier. The
Discovery Service permits the run-time determination of the mapping between JAUS Identifiers
and Service ldentifiers. A JAUS Identifier has the form {SubsystemID, NodelD, ComponentID}.
[AS5710]

Transport Layer: The JAUS Transport Layer is responsible for providing resources and
mechanisms for the routing and delivery of messages over a variety of available transport
domains. While a Service Definition is independent of the underlying transport, it is designed for
integration with AS5669A [5669A]. Other transport layers are possible, provided they meet the
requirements described in the Transport Service [5710].

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 19 of 265

2 JAUS

tool set

Message Code: The Message Code, sometimes called a Message ID or Command Code, is an
identifier globally unique to each message. This code, along with the associated service version,
allows receiving entities to know the type, intent, and structure of an incoming message. The

Message Code is serialized in the same position within each message [5710].

JTS Users Guide, Ver 2.0 Copyright 2013 Page 20 of 265

& 1AUS

tool set

3 JTS System Description

3.1 Key Features

The key features of JTS include:
e Graphical tools to formally specify SAE JAUS service definitions.

e JSIDL import and export of service definitions, enabling JTS to be used as a

standards creation tool.
e Validator to ensure correctness of formal specifications.

e Persistence of created services and associated elements within a database,
enabling rapid re-use of services.

o Automated code generation of C++ Component code to handle protocol

sequencing and message marshalling and un-marshalling.

e Automated documentation generation of HTML documents of sets of service
definitions.

e Communications Component (formerly Node Manager) for inter-process and inter-
processor communication per AS-5669A [5669A].

¢ Runtime Verification of JAUS message traffic and data across-the-wire through the

wireshark network protocol analyzer.

e Protocol Inspection via Wireshark

3.2 Environment

Table 1 - Generated Code Supported Systems provides a reference of the systems the

generated C++, Java, and C# code and JTS have been tested on.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 21 of 265

tool set

&1Aus

Table 1 - Generated Code Supported Systems

C++ Java C#

Windows | Using Visual Studio C++ Win XP/7 wusing Java Win XP/7 using Visual

compiler. Runtime Environment. Studio C# compiler and
.NET 3.5
Linux Ubuntu 8.04/9.04 Ubuntu 10.04 using Java Untested

Runtime Environment.

Cygwin Version 15 on XP Not supported. Untested.
version 1.7 on Vista/7

Os X Leopard and Snow Untested. Untested.
Leopard with GNU g++

Note: JTS does not support generating Java code through Cygwin due to known issues with
Cygwin loading native DLL’s.

JTS is built using Java, and therefore requires a Java Run-Time Environment. Additional details

on how to download and install Java are available from http://www.java.com. Version 6

(sometimes called 1.6) is recommended.

Note: If building from source, the Java Developer's Kit SE Edition is required, downloadable from
http://developer.sun.com

The JAUS Tool Set is built upon several open-source tools. These tools are required for the
correct operation of the toolset, and have been included in the installation package. No user

action is required:

e State Machine Compiler: http://smc.sourceforge.net. This is used to generate all

the state management, transition, and action code. JTS only generates SMC

description files (.sm files), and invokes SMC to generate C++ code.

o JMatter Framework: http://www.jmatter.org/. The jMatter framework is the basis for

the GUI, database, and entire JTS structure. An in-depth description of jMatter is
outside the scope of this document, but a basic understanding of what jMatter is, and
what it provides, will be very helpful. All jMatter applications share a common GUI

philosophy and architecture, and JTS follows this structure.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 22 of 265

http://www.java.com/
http://developer.sun.com/
http://smc.sourceforge.net/
http://www.jmatter.org/

& 1AUS

tool set

Note: Tutorial videos at http://www.jmatter.org/ provide an excellent overview of the jMatter GUI
and we recommend that you view some of the introductory videos.

o MxGraph: http://www.jgraph.com/mxgraph.html. MxGraph is used to draw state

machine diagrams using a drag-and-drop GUI.

3.3 Workflow

The JTS workflow differs from the typical development environment or IDE such as MS Dev
Studio and Eclipse. In particular, there is no notion of a project file. This is a critical
distinction, and one that may cause some initial confusion. When starting JTS, the user does not
"Create a new project” as in Dev Studio or Eclipse. Rather, she just starts creating the service.
There is also no "save" feature, since a backend database is used for object persistence

specification.

Every specification created in JTS is stored in an internal database. This includes
specifications of Simple Fields, Complex Fields, Message Definitions, Service Definitions, and
Component specifications. The storage system uses Hibernate to map the domain model to a

traditional relational database system that is automatically installed with JTS.

A significant advantage of this approach is easier service re-usability (See section on
Persistence). Past Records, Message and Service Definitions that you have created will always

be available for incorporation into new specifications.

At the highest level, a typical JTS workflow follows a sequence of service creation, code

generation, code modification, and execution. This is illustrated in more detail below.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 23 of 265

http://www.jmatter.org/
http://www.jgraph.com/mxgraph.html

tool set

&aus
-

Create Service

Create new service elements Reuse existing service elements

Generate Component Code

Add application code for transitions and

Add application code for message handlers actions

Execute Component Code

Run Communications Component (optional) Run Component(s)

Figure 1: JTS Workflow

The steps for creating a service are explained in more detail in Section 4.5. Examples of creating
services, modifying generated code, and executing generated code are presented in Sections 5,
9,and 7.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 24 of 265

tool set

& 1AUS

4 Installing and Getting Started

4.1 Obtaining and Installing JTS

Note: JTS is available as a binary distribution (JAR file) or as source.

The JAUS Tool Set Graphical User Interface is designed to be highly portable, and will run on
any system that supports a Java Run-Time Environment. This section will describe the system

requirements, including hardware and software prerequisites.

4.1.1 Getting Help
This User's Guide is intended to provide an overview with some detailed examples. You will
need help at some point. We have assistance available for developers using JTS at

http://www.jaustoolset.org/forums/. This includes a community support forum, FAQSs, tutorial

videos, and mini how-to guides.

4.1.2 System Requirements
JTS is not hardware intensive, and should run on most laptops and desktops. It is not intended

for embedded devices with little memory, storage, or processing power:
e x86-compatible CPU
e 256 Mb RAM
e 500 Mb disk space (hard drive, compact flash, or USB memory)

At a minimum, JTS requires a Java Run-Time Environment. Compilation of generated source
code will require a compiler, python interpreter, and SCons. See Sections 4.1.3 and 4.1.4 for

details on obtaining these tools.

Note: We strongly recommend installing the SUN JAVA SE JDK directly from
http://developer.sun.com rather than using the Java installation that may come with your na-
tive distribution or through distribution-specific package managers.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 25 of 265

http://www.jaustoolset.org/forums/

tool set

&1Aus

4.1.3 Microsoft Windows Preparation

Note: Source code generated by JTS is known to have compilation problems if the installation tar-
get directory contains spaces, e.g. c:\\Program Files\JTS. Please install JTS to a target direc-
tory that does not include spaces, such as c:\JTS.

Note: When compiling C# code, if scons is unable to locate the CSharpCommon.dll, it is because
the C# scons add-on failed to call the CSharpCommon sconstruct file.

The workaround for this is located in the folder <installa-
tion_dir>/templates/Common/libCSharp/ libCommon_CSharp/framework/ <1 _1 or 1_0>
where 1_1 and 1_0 are folders containing the libraries for transport versions 1.1 and 1.0.
Navigate to the appropriate folder and locate two files: Sconstruct and
Sconstruct.workaround. Change the names like so: Sconstruct -> Sconstruct.tmp
Sconstruct.workaround ->Sconstruct.

Navigate to the directory in a console, and run the command scons. This will force the library
to be built. When finished, rename the files back to their original names.

JTS and generated C++ and C# code are supported under Windows natively using the Microsoft
Visual Studio (Express or full). Table 2 shows the environments each language has been tested

on and the recommended compiler.

Table 2 - Generated Code Windows Support

C++ Java C#
Tested versions of | XP/Vista/7 XP/7 XP/7
Windows
Cygwin e XP/2000: 1.5.x Not supported Untested.
and 1.7.x
Vista/7: 1.7.x
Using GNU g++ compiler
Recommended Visual Studio C++ Java Development Visual Studio C#
compiler compiler (VS Express or Kit compiler (VS Express
Full) or Full) with .NET 3.5

Cygwin is available at http://www.cygwin.com.

Note: When installing Cygwin, we recommend installing the GNU g++ compiler toolchain.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 26 of 265

http://www.cygwin.com/

tool set

& 1AUS

In addition, JTS and all generated languages require the following tools:

e Java Development Kit SE (from http://developer.sun.com).

e Ant binary distribution (from http://ant.apache.org/bindownload.cqi)

e Python (from http://www.python.org). Note that Python V3.x is incompatible with

scons; we recommend Version 2.7.

e Scons (from http://www.scons.org).

4.1.4 Linux Preparation
For Linux, the preparation steps are similar to Windows. If planning on generating C# code,
please note that C# generated code has not been tested in a Linux environment. For Java and

C++ code generation and JTS, install the following:

e Java Development Kit SE (from http://developer.sun.com).

Note: Do not install the JDK that typically comes with Ubuntu or other distributions. Use the one
directly from Sun.

e Ant Version 1.7.x from your OS package manager, or http://ant.apache.org

e Scons Version 1.2 or later from your OS package manager, or http://www.scons.org

Note: JTS makes use of the antlr parser generator. Antlr is included with the JTS distribution. Some
Linux distributions also include antlr by default. If yours includes antlr, please remove it using
your distribution's package manager, otherwise compilation errors may occur.

4.1.5 Other Operating Systems
While installation instructions are provided only for Linux and Windows, the JAUS Tool Set
should run on any platform with a Java SDK SE Edition, version 6 or higher. Please see the

community forms on the support website for additional guidance.

4.1.6 Installing JTS from Binary Distributions
The JAUS Tool Set binary distribution can be downloaded from

http://www.jaustoolset.org/forums/local_links.php.

Installing the binary distribution is straightforward:

e Unzip the distribution in the directory of your choice

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 27 of 265

http://developer.sun.com/
http://ant.apache.org/bindownload.cgi
http://www.python.org/
http://www.scons.org/
http://developer.sun.com/
http://ant.apache.org/
http://www.scons.org/
http://www.jaustoolset.org/forums/local_links.php

tool set

¥ JAUS

e Set your environment variables as described in Section 4.1.8
e Double-click on JTS.jar to run JTS.

4.1.7 Installing JTS from Source

JTS compilation is the same for either Linux or Windows with Cygwin.

The JAUS Tool Set source distribution can be downloaded from

http://www.jaustoolset.org/forums/local_links.php. We assume installation into /home/user/JTS/

lubuntu:~/> unzip JTS 1 1 OSource.zip
At this point, there are certain compilation and database preparation actions that need to be

taken. This is done by invoking the appropriate ant target. This target handles database

preparation and compilation.

ubuntu:~/> cd JTS/GUI
ubuntu:~/JTS/GUI> ant schema-export

4.1.8 Setting Environment Variables

Code generated by the JAUS Toolset uses a common software framework to provide basic
services such as transport, thread handling, and definition for parent classes. Before compiling
the generated code, the JTS_COMMON_PATH’ environment variable must be set. This
variable must reference the Common directory found in the JTS installation

If Installing from Source Distribution.

» WINDOWS: Right click “My Computer”, select Properties. Select the “Advanced” tab
and “Environmental Variables” button at the bottom. This brings up a new dialog. Select
“‘New” under “System variables” and enter “JTS_COMMON_PATH” (no quotes) as the
variable name. Enter “C:\<path to JTS install>\JTS\GUI\templates\Common” (no quotes)

as the value. Press ‘OK’ until the boxes go away.

» LINUX or CYGWIN: Edit ~/bashrc or ~/.bash_profile. Add “export
JTS_COMMON_PATH=/<path to install>/JTS/GUl/templates/Common’ (ignore double
guotes, single quotes required around path name). Note that in cygwin, the path should
be a cygpath, e.g. /cygdrive/c/<rest of the path>....

If Installing from Binary Distribution.

» WINDOWS: Right click “My Computer”, select Properties. Select the “Advanced” tab

and “Environmental Variables” button at the bottom. This brings up a new dialog. Select

JTS Users Guide, Ver 2.0 Copyright 2013 Page 28 of 265

http://www.jaustoolset.org/forums/local_links.php

¢ JAUS

tool set

“New” under “System variables” and enter “JTS_COMMON_PATH” (no quotes) as the
variable name. Enter “C:\<path to JTS install>\JTS\templates\Common” (no quotes) as

the value. Press ‘OK’ until the boxes go away.

» LINUX or CYGWIN: Edit ~/bashrc or ~/.bash_profile. Add “export
JTS COMMON_PATH=/<path to install>/JTS/templates/Common’ (ignore double
guotes, single quotes required around path name). Note that in cygwin, the path should

be a cygpath, e.g. /cygdrive/c/<rest of the path>....

Failure to set the JTS_COMMON_PATH environment variable will result in an error message

when attempting to build the generated code.

4.1.9 Configuring the Run-Time Environment

By default, the generated code builds an executable and several dynamic (shared) libraries. To
run the executable, the shared libraries must be available at run-time. The build scripts
automatically copy the shared libraries to the bin directory, such that they are co-located with the
executable. For Windows environments, including Cygwin, this is sufficient and no additional

user action is required.

For many flavors of Linux, however, a co-located shared library may still not be found at run-
time. For this reason, we recommend modifying the library path using the $LD_LIBRARY_PATH

environment variable:
export LD_LIBRARY_PATH=$LD LIBRARY_ PATH:’

Otherwise, all shared libraries must be copied to a run-time accessible location (such as /lib or

/usr/lib) to execute the generated code.

4.2 Starting the system (Source Distribution Only)

JTS is started through ant, as follows:

|ubuntu:~/JTS/GUI> ant run |

At this point, you should see a GUI with a blank window. Section 4.4 presents a brief overview of
the GUI.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 29 of 265

tool set

¢ JAUS

4.3 Ant Targets (Source Distribution Only)

The Java Ant build system is used to compile and run JTS. In addition, there are other build

targets that are useful. Below is a listing of Ant targets.

Table 3 — Ant targets

Project Target Use

JTS GUI schema- This is used to build JTS. It also has the side effect
export of clearing the database, so using this target will
result in loss of all data in JTS.

JTS GUI schema- This target is used to migrate the existing contents
update of a database to a new revision.
JTS GUI compile Does a full compile of JTS, without re-generating

and wiping the database. Also does a full compile

of the PromelaCodeGenerator which is required by

the JTS GUI.
JTS GUI clean Does a full clean of all JTS build artifacts.
JTS GUI clean- Wipes the database. Faster than doing a schema-
database update
JTS GUI backup- Backs up the database in a directory specified via a
database prompt, located under db_backup directory. The

user may also opt to have a directory name

automatically generated based on a timestamp.

JTS GUI restore- Restores a backup database from a directory under
database db_backup created by backup-database. The user

must specify the backup directory name.

JTS GUI run Runs JTS
PromelaCodeGenerator compile Does a full compile of the PromelaCodeGenerator.
PromelaCodeGenerator clean Does a full clean of the PromelaCodeGenerator

JTS Users Guide, Ver 2.0 Copyright 2013 Page 30 of 265

& 1AUS
r

tool set

build artifacts.

PromelaCodeGenerator run Runs the PromelaCodeGenerator in a standalone

mode.

4.4 Graphical User Interface Overview

The JTS GUI is based on the jMatter framework. All jMatter applications have a similar look and
feel. jMatter applications have a container frame, in which multiple internal frames with content
can be opened and worked on. The column on the left is a class list containing selectable icons

for the top-level specification elements.

The figure below shows what you should see when you start JTS.

Figure 2: JTS Canvas

The GUI consists of the following:

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 31 of 265

tool set

¥ JAUS

e Canvas: This is the main work area where internal frames may be opened to create,
read, update and delete specifications for simple and complex data fields, protocols,

message definitions, etc.

o Class List: These icons represent the top-level specification elements (also called
types) in JSIDL. This includes:

e Simple Fields: Atomic data types (Fixed Field, Bit Field etc)

e Complex Fields: Composite data types (Record, List etc.)

e Message Definitions: Message definitions consisting of header, body and footer.
e Protocol Behavior: Finite state machine descriptions of service behavior.

e Service Definitions: Service specifications

e Service Set: Sets of service specifications

o Component: Component specifications

e Admin: The Admin class list allows users to set typical administrative features. This
is part of the jMatter framework and more information on its use may be found in the

jMatter documentation.

Almost every JSIDL specification element is represented by a selectable icon. Since all of these
icons cannot fit in the class list, they are made accessible through the menu. To see a complete

list of types that may be accessed through the user interface, go to Types->Types->Browse.

Double clicking on these icons opens an internal frame that lists existing objects of the particular
type in the database. Right clicking on the icons provides a context menu with options to create
new objects of the type, open existing objects of the type or find objects of the type. An option
called Manage Restrictions is also provided as part of the jMatter framework. More information

on this option may be found in the jMatter documentation.

A fuller explanation of how to use the GUI to create complete Service Definitions is provided in
Section 5 (Creating your First Service) and Section 10 (Defining Message Elements). In addition,
there is an Overview Video Tutorial that highlights what each Element Icon does in JTS. This

video tutorial is available at http://www.jaustoolset.org/forums

JTS Users Guide, Ver 2.0 Copyright 2013 Page 32 of 265

http://www.jaustoolset.org/forums

tool set

&1AuUs

4.5 Service Creation Overview

JTS is intended to be a service creation tool. It uses a bottom-up philosophy for service creation,
in which simple fields are used to compose complex fields which are embedded within message
definitions, which are assigned to input/output sets, which are combined with protocol behaviors
to create service definitions, which are aggregated into service sets, and then instantiated in
components which lead to generated C++ executable software. The figure below illustrates this

hierarchy of service creation.

| *Creste Componemt

Component

Service Set

| e Aggregata Servicas I

s Craate Service |

f Def

Service Def 1 |

| s Create 1/0 Sats and

i - Protocol Definitions ' lnput Set | I Output Set | k;:::;l“

<O ‘;':'.::m‘"g‘ M Def essage assage essage
3 essage LUe Def2 Def3 Defa

L e Create Complex
Flelds

' Complex Field

§ * Create Simple Simple simple Simple
Flelds Field 1 Field 2 Field3

Figure 3: JTS Service Creation Hierarchy

JTS does not disallow the top-down approach, it only discourages it by virtue of its design. The
bottom-up approach was favored to the typical top-down approach since it helps to tackle the
hierarchical complexity of JSIDL specification elements in a more manageable way. For
instance, it turns out that a SimpleField like a Fixed Field is not all that simple to specify
completely in JSIDL. Aside from the attributes of a Fixed Field, one may need to specify a scale
range, value ranges and value enumerations. The bottom-up approach gives focus to the
element being specified without adding clutter from associated elements. So when the user is

specifying a Simple Field, the user interface puts all the focus on the Simple Field and not the

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 33 of 265

tool set

$JAUS

fields associated with the Simple Field. Once the Simple Field has been completely specified, its
specification can be used in specifying higher level elements like Complex Fields, Message
Definitions and so on. This approach is akin to designing and setting aside parts in a parts library

and then building complex components from those parts in a tool like AutoCAD.

Working with JTS is significantly easier if you have some notion of the layout of the service you
want to create prior to specification, and instantiate the service in the order of steps listed above.
Once the service specification has been built, the document generator (See Section 18) may be
used to obtain a "top-down" view of a service specification. The user interface also provides a

tree-view that may be used to verify the top-down view.

Another significant benefit of the bottom-up approach comes from the class model of entities and
associations that is required for the bottom-up methodology. In the class model, each class
exists as a separate entity in the database (See Section 5). Associations tie entities together to
make high level entities like Message Definitions and Service Definitions. As such, JTS is
uniquely suited for design element re-use. Once simple fields, records, and message definitions
have been created, it is extremely straightforward to re-use them in new services and

components.

Therefore, while there may be some initial start-up cost with using JTS for service creation, there

is a rapid gain in productivity that occurs from element re-use.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 34 of 265

& 1AUS

tool set

5 Persistence

A very important feature that is central to JTS is the repository or database feature. Its objective
however is very simple. It is to encourage reuse of existing types. From the perspective of
languages, the set of specifications within the database may be viewed as a domain language —
the language of robotics. In this language, Simple Fields are the words (or vocabulary) of the
language. The message definitions may be viewed as short meaningful phrases. Protocol
behavior defines the grammar that must be applied in making valid sentences. Finally, the
message traffic that is generated from an execution is a conversation that took place in the

language of robotics (or JAUS in particular).

The database allows and encourages the user to reuse existing words, phrases and grammar. In
doing so, it creates a convergence in the domain language towards a finite and comprehensive

vocabulary.

Along with the database comes a simple yet powerful search mechanism which is described in
Section 13. As of release 1.0 the search mechanism is limited to performing manual queries on

the database.

5.1 Recursive Deletion

JTS provides the ability to recursively delete a service definition. In previous versions of JTS, a
service definition could be deleted from the persistence database. However the various
elements that made up the service definition, such as event definitions, simple fields, and
complex fields would not be deleted when their containing service definition was deleted.
Recursive deletion removes both a service definition and any elements that are uniquely
contained within that service definition. This allows re-importing of services with modified sub-

elements, where changes to sub-elements are guaranteed to be incorporated.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 35 of 265

tool set

i JAUS

Recursive deletion may be invoked on a service definition either by clicking “Recursive Delete”
on the service definition’s context menu (see Figure 4) or by clicking “Recursive Delete” in a

service definition’s window in JTS.

PO et s

Q Service Defs (3)

| genice DefName w |[contains | v/ |

W S53v1.0[ServiceDef]
W S1v1.0[ServiceDef]
W S2v1.0 [SewviceDef]

Open

7 Edit

ED copy
Export To JSON

@ Refresh

& Delete
Export To JSIDL
Récuréi_fé Delete

Figure 4: Invoking Recursive Delete

JTS Users Guide, Ver 2.0 Copyright 2013 Page 36 of 265

tool set

&)Aus

After clicking “Recursive Delete”, a dialog appears like that shown in Figure 5. In the figure, a
service definition “S1” has been selected for recursive deletion. The upper list shows the
elements comprising S1 that will be deleted as they are unique to S1, while the lower list shows
elements comprising S1 that cannot currently be deleted, since other service definitions depend
on them. Click “Delete” to delete the selected service definition and all elements displayed in the

upper list.

Confirm Recursive Service Deletion

You are atternpting to recursively delete this service definition; 51

The following sub-elements of the service definition will be deleted:

FF2 [FixedField]

FF3 [FixedField]

FrotacalBehavior inameless) [ProtacalBehavior]
Rec! [Record]

51 [ServiceDef]

51_MessageDefl [MessageDef]
S1_MessageDel_Body [Body]
51_MessageDel_EmptyFooter [Footer]
51_MessageDel_EmptyHeader [Header]
51_MessageDel_Seguence [Sedquence]

51 _wl.0_OutputSet [OutputSet] s
S1_w1.0_inputSet [InputSet] hd

The following sub-elements of the service definition cannot be deleted, due to dependencies

fram other service definitions:

FF4 [FixedFigld]
FF& [FixedField]
FFG [FixedField]
FFT¥ [FixedField]
FF& [FixedField]
FF4 [FixedField]
Rec2 [Record]
Recd [Record]

Figure 5: Confirming Recursive Deletion

Note: Currently, after performing recursive deletion, JTS element list windows such as the service
definitions list, complex types list, and message definitions list are not automatically updated
to show the results of recursive deletion. They need to be manually refreshed by the user
clicking the ‘Go’ button in the list window with an appropriate filter selected.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 37 of 265

tool set

FJAUS

5.2 Overwrite Message Definitions

JTS includes a feature where message ids are checked when trying to save a message
definition. This is done to eliminate duplicate messages in the database. Whenever trying to
save a message with the same message id as a message already stored in the database, a

window will pop up to notify you of your options.

[mommons R

A message definition with this id already exists in the database.
Do you want to overwrite this message?

i, Output Sets}

In most cases, like when you are modifying a previously saved message definition, you will want
to overwrite the previous message definition. If this is the case, simply press the ‘Yes’ button
and your changes will be saved. However, if you receive this pop up unexpectedly, a message
with the same message ID already exists in the database. In this case you will most likely want
to click the ‘No’ button and modify the message id to some other value unique to the system you

are designing.

5.3 Editing Lists

When editing items in a list within a JTS window, special care must be taken to insure that the
item is in the editing state so that validation of the definition can occur. If the window is not in
the editing state, it is possible for a user to incorrectly specify items in a list which may lead to
unspecified behavior. The proper way to add and remove items from an element is to press the

Edit button. This is applicable to all windows that contain lists within JTS.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 38 of 265

&)Aus

tool set

& CancelEventRec [Record] EEB
‘ﬁ} CancelEventRec [Record] =N
Name: CancelEventRec —.-—[./ Edit]
Optional? No | & Refresh J
[Simple Fields (2) M Delete 3
Record Simple Fields
. =
ETLERZ 25 4 RequestiD [FixedField]
A EventlD [FixedField]
Interpretation: —
E‘lif;r::g_ng {Headers, Bodies, Footers, Lists, Sequences, Variants}

When the window is in viewing mode, do not modify any lists within the window. To edit a list,
press the edit button which will change the button text to ‘Save’. This specifies the window is in

an editable state and that validation can occur when a save is triggered.

Q, CancelEventRec [Record] EE
ﬁ'& CancelEventRec [Record] =N
Name: —p [Dsme |
Optional? () Yes ® No | Sanacl J

B Simple Fields (2) | SaveAndClose |

Record Simple Fields
g

LB AR 4 RequestiD [FixedField]
A EventlD [FixedField]

Interpretation:

Referencing

Elements: {Headers, Bodies, Footers, Lists, Sequences, Variants}

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 39 of 265

tool set

]AUS

6 Validation

One of the objectives of JTS was to allow the user to create well defined specifications with only
a high level understanding and knowledge of JSIDL. The details such as the syntax and
semantics behind each type have been built into the tool in the form of an on-the-fly validator.
The validator prompts the user with an error each time the user makes a syntactically or

semantically incorrect input either manually or through the “Import” option.

Manual entries are flagged using red embedded text as shown in the figure below. The text
message is brief but aims to guide the user towards correct syntax and semantics as specified
by JSIDL. Note that the validator catches most but not all semantic errors in release 1.0. This is
especially true for the protocol behavior section. An exhaustive treatment of all semantic errors

is left for a future release.

AL Dest Subsystem 1D [FixedField]
m Dest Subsystem ID [FixedField]

[1 validation error.j Name must be a valid identifier in the C programming language

Name: IDest Subsystem ID [

Save And Close

Optional? QOYes @ No

Type: [unsigned shortinteger |v|

Units: [one IVI

Interpretation: lestination Subsystem ID, where a value of OxFFFF represents all subsystems]

Scale Range:) [ScaleRange]

value Set. JB Value Sef] | ==

Referencing

Elsments: {Records, Arrays}

Created On: 05/07/2010 09:41

Figure 6: Validation message when incorrect input is detected

JTS Users Guide, Ver 2.0 Copyright 2013 Page 40 of 265

¢ JAUS

tool set

7 A Short Tour

This section is designed to help the user create a fully executable JAUS client-server

implementation of a simple Ping service in under 10 minutes using JTS.

7.1 Create a Component Specification

a) Launch the application by typing "ant run" at the command prompt, or by double clicking

on JTS jar (binary distribution).

b) Import JAUSToolset\ examples\xml\Ping\PingClient.xml by right-clicking on the "Service
Defs" icon on the main GUI frame and selecting "Import from JSIDL". This will import the
PingClient service and PingServer service since PingClient is related to (client-of)

PingServer. Double-click on "Service Defs" to view the imported services.

c) InJTS, a Component is built from a set of Service Sets, and a Service Set is built from a
set of Service Definitions that are usually related by the inherits-from or client-of
relationships. To build a Component for the Ping example, a Service Set needs to be
built first by right-clicking on the Service Set icon on the main GUI frame and selecting
“‘New”. Specify the name, id and version of the new Service Set as "PingServiceSet,
urn:jts:PingServiceSet" and 1.0. To select the services for this Service Set, expand
“Service Defs”, then click on the blue "+" button and select "Browse" in the pop-up menu.
Now use the List Picker to select both PingServer and PingClient. Then press "Done".

"Save and Close" PingServiceSet.

d) Next, create a new Component by right-clicking on the Component icon on the main GUI
frame and selecting “New” from the pop-up menu. Set the name of the component as
“PingComponent” and component ID = 120. Add the PingServiceSet to the component
by expanding “Service Sets”, then clicking on the blue "+" button and selecting “Browse”
to bring up the list picker. Press "Save" on the Ping component dialog box to complete

the creation of the Ping component specification.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 41 of 265

tool set

¥ JAUS

7.2 Auto-Generate a Component Implementation

a) To auto-generate the code for the component, simply press the "Auto-generate Code"
button on the PingComponent window. Click “Browse” and select the path for the
generated code to go. Note that the path should not have spaces in it, so if generating on
Windows, avoid using folders with names similar to “My Documents”. The code is
generated in the directory named ‘PingComponent_120" under the specified path. By
default, the code is generated in C++. To generate code in Java or C#, select the Java or
C# radio buttons at the bottom of the pop-up window.

b) Now, the application behavior code has to be manually added to the server
implementation that was auto-generated. First, we add the action handler that allows the
Ping Server to send a Report Heartbeat Pulse using the built-in ‘sendJausMessage’
function. If generating C++ code, replace the following function in
PingComponent_120\src\urn_jts_PingServer_1_0\PingServer_PingFSM.cpp

void PingServer PingFSM: :ReportHeartbeatPulseAction ()

/// Insert User Code HERE

with,

void PingServer PingFSM::ReportHeartbeatPulseAction ()

// Send a ReportHeartbeatPulse message back to the local component.
ReportHeartbeatPulse response;
sendJausMessage (response, *jausRouter->getJausAddress()) ;

If generating Java or C# code, the same changes must be made, but with slightly different

syntax:

In PingComponent_120\src\urn_jts_PingServer_1_0\PingServer_PingFSM.java or .cs, replace:

public void ReportHeartbeatPulseAction ()

{
/// Insert User Code HERE

}
with:

public void ReportHeartbeatPulseAction ()
{

JTS Users Guide, Ver 2.0 Copyright 2013 Page 42 of 265

¢ JAUS

tool set

ReportHeartbeatPulse response = new ReportHeartbeatPulse () ;
sendJausMessage (response, jausRouter.getJausAddress())

// Send a ReportHeartbeatPulse message back to the local component.

c) Finally, the application behavior code has to be manually added to the client. The client

has two actions: 1) Send a Query Heartbeat Pulse that will elicit a response from the

Server, and 2) Print a message to the screen when a response is received.

e) In PingComponent_120\src\urn_jts_PingClient_1 0\PingClient_PingClientFSM.cpp,

replace

void PingClient PingClientFSM: :QueryHeartBeatPulseAction ()

/// Insert User Code HERE

void PingClient PingClientFSM: :printToScreenAction ()

/// Insert User Code HERE

with,

void PingClient PingClientFSM: :QueryHeartBeatPulseAction ()
// Send the QueryHeartbeat message to the local component
QueryHeartbeatPulse query;
sendJausMessage (query, *jausRouter->getJausAddress());

void PingClient PingClientFSM: :printToScreenAction ()

printf ("Hello World!\n") ;

For Java and C#, replace the following lines of code in

PingComponent_120\src\urn_jts_PingClient_1_0\PingClient_PingClientFSM.java or .cs:

public void QueryHeartBeatPulseAction ()

{

/// Insert User Code HERE

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 43 of 265

tool set

¥ JAUS

}

public void printToScreenAction ()

{
/// Insert User Code HERE

}

with this for Java,

public void QueryHeartBeatPulseAction ()

{
// Send the QueryHeartbeat message to the local component
QueryHeartbeatPulse query = new QueryHeartbeatPulse();
sendJausMessage (query, JjausRouter.getJausAddress()) ;

}

public void printToScreenAction ()

{
System.out.println ("Hello World!");

}

and this for C#,

public void QueryHeartBeatPulseAction ()

{
// Send the QueryHeartbeat message to the local component
QueryHeartbeatPulse query = new QueryHeartbeatPulse();
sendJausMessage (query, jausRouter.getJausAddress())

}

public void printToScreenAction ()

{

Console.WriteLine ("Hello World!");

}

7.3 Compile and Execute a Component

a) To build the component, simply type “"scons" under the directory
"PingComponent_120" at the command prompt.

b) If running C# and a compile error regarding the common library appears, please refer
to the note in section 4.1.3 for a workaround.

¢) If running C#, open a second command prompt and navigate to JTS/nodeManager,
type “scons”. When it has finished compiling, navigate to JTS/nodeManager/bin and

type “NodeManager.exe nm.cfg”. This is required by the C# code to run properly. It

JTS Users Guide, Ver 2.0 Copyright 2013 Page 44 of 265

& 1AUS

tool set

does not print any output while running. When finished with the example, use ctrl + ¢
to exit the application.

d) Once the build process is completed, the PingComponent 120 executable is
generated in the PingComponent_120/bin directory.

e Torun C++, simply execute it from the command line:

$> cd bin
$> ./PingComponent 120

for Linux or

$> cd bin
$> PingComponent 120.exe

for Windows.

e To run Java, execute the following line from the command line in any system:

$> cd bin
$> java —jar PingComponent 120.jar

e To run C#, execute the following line from the command line in Windows:

$> cd bin
$> PingComponent 120.exe

Note that there may be a short delay and a warning message while the Framework attempts

to contact the Node Manager. This is normal, and will be discussed further in Section 16.

e) The “Hello World!” message will be displayed on the screen.
f) End the program. For C++ and Java, hit Ctrl + c. For C# hit Ctrl + ¢ followed by the

escape key.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 45 of 265

tool set

$JAUS

8 Creating your First Service: Ping

Note: In this Section, we repeat the Ping Example used in the Short Tour. Rather than importing
the service however, the JTS User Interface is exercised to construct the service. Before
starting this example, we recommend clearing the JTS database. If you are working from a
source distribution, close any running instances of JTS, and from the command line, type:
‘ant schema-export’. Use caution, since this will cause all elements defined in JTS to be
erased. If you are working from a binary distribution, copy a blank database template (availa-
ble at http://www.jaustoolset.org/forums) to the GUI/db/ location.

In this section, we present a guided walk-through of using the JAUS Tool Set to model, build,
and run a simple component. The workflow for this example is a bottom-up approach broken into

7 steps (Steps 6-7 are variations on the same task):

1. Identify the services needed in the component, and their interfaces

2. Define the messages each service will use for inputs and outputs

3. Describe the protocol that governs the rules for message exchange for each service
4. Merging messages and protocol into service definitions

5. Build a single component from the services

6. Generate the C++ source code, and integrate user code or

7. Generate the Java source code, and integrate user code or

8. Generate C# source code, and integrate user code

9. Build and run the system

The goal of this section is not a detailed instruction manual on every feature and facet of the
JTS. Rather, the emphasis is on covering the gamut of functionality, to give a basis for more in-

depth study later in this document.

8.1 Identify the Interface

In this example, we consider a simple service which behaves similarly to the SAE JAUS
“Liveness” Service [AS5710] or an ICMP “ping” server. When the service receives a ping

request, called a QueryHeartbeatPulse message in SAE JAUS, it should reply to the sender with

JTS Users Guide, Ver 2.0 Copyright 2013 Page 46 of 265

& 1AUS

tool set

a ping response (ReportHeartbeatPulse). We can represent this behavior with a simple state

machine diagram, as shown in the following Figure 7 below:

atPulse () ;

Q eryHear

Figure 7 Protocol Definition for Ping Server

The state machine diagram shows a service with a single ‘default’ state along with a single

loopback transition denoted as ‘A’. This transition can be described by its triggering message,

any associated guard conditions, and its action as shown in Table 3.

Table 3 Ping Server Actions and Guards

Label | Trigger Conditions Actions

A QueryHeartbeatPulse none Send a Report Heartbeat Pulse
message to the component that sent
the query

Hence, when the service receives the QueryHeartbeatPulse message, it should reply back with

a ReportHeartbeatPulse.

In order to test our ping server, we’ll need another service to send messages to it. This will be
our client. Our client should send a ping request (QueryHeartbeatPulse) when it first starts up.
If it receives a message, it should print out an acknowledgement to the screen, as seen in Figure

8: Protocol Definition for Ping Client.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 47 of 265

tool set

&1Aus

Beady:
entry: broafcastiueryHeartheatPulse ()

eatPulse () ;

Figure 8: Protocol Definition for Ping Client

This protocol definition introduces the concept of ‘entry’ actions, which are similar to transition
actions but are executed each time the state is entered. In this case, action ‘A’ is executed one
time when the client starts, and action ‘B’ is executed when we receive a ReportHeatbeatPulse

message.

Table 4 Ping Client Actions and Guards

Label | Trigger Conditions Actions

A <entry> none Broadcast a Query Heartbeat Pulse
message to all services in this

component

B ReportHeartbeatPulse none Print a message on the screen

Note that since transition ‘B’ is a loopback transition (the end state is the same as the start
state), the entry action ‘A’ will not be executed. [JSIDL] specifies that entry and exit actions are
not executed on loopback transitions. If we want our client to continuously send ping requests,
we could add a second action to the ‘B’ transition to broadcast another query message. For this

example, we will assume one broadcast at client start-up is sufficient.

8.2 Defining the Message Set

The ping client and server only require two messages: QueryHeartbeatPulse and

ReportHeartbeatPulse. We’'ll use the JTS to model these messages.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 48 of 265

ALUR

tool set

1. Start the toolset using instructions in Section 4.2. The JTS user interface is broken into
three areas: A menu bar at the top, a left hand column of icons that lists the Model
Elements, and a large blue work area.

2. From the Model Elements list, right click the ‘Message Defs’ icon and select ‘New’

-L‘

Senvice Defs

t &, Browse

Smart List
Manage Restrictions
Open

Simple Fields

i

Dratannl

Figure 9: New Message Set Screenshot

3. This opens the ‘New Message Def dialog box. Here we define the message name
and ID, give it an optional description, and assign fields (data) to the message. In the

‘Name’ box, enter ‘QueryHeartbeatPulse’

| ez Y
G NewMessage Dot oo
P o Tl
FYTa— e
e
(Lo
(s O AN
Wate @ 73 Orameemhiand | X
andi | ¥
Bromt | $
Lt 2 »
-~ maann

Figure 10: New Message Def Screenshot

4. The ID is a 2-byte hexadecimal value that uniquely identifies each message. Instead
of the human-readable Name string, the ID allows a receiving entity to correctly identify the
message type before processing it. SAE JAUS requires the ID to be included in each

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 49 of 265

tool set

& 1aus

message as the first two bytes. The JAUS Tool Set defaults to this setting, by automatically
including the JTS DefaultHeader for each new message. For this example, we’'ll use the

SAE JAUS message identifier for the QueryHeatbeatPulse message (2202)

AT —— -0 X
€& New Message Det o m
R T

10 62 trgte o | 2202 | cance

| S Ana Cjoee

Doy ption

Figure 11: Populated Message Def Screenshot

5. Now enter a text description.
& lawUessago Daf -3 X
@ New Message Def nm
Kame; | CuenHearaatPulse | - i
10 42 bysw hax: 12202 | [goece |
Thes message sancs 3 quer heartbaaf [S And Clove |
Descripoen

M Cotmand? QO Yer @ N0

vescer @8 JTS_Detaumieade Meageq | X

ooy @ [Body | +
Fosr: @ o) |
iecit ‘;’:;“'";m,,.rms Owput S65)

!] Craaed On 05202010 11 45

Figure 12: New Message Def Description Screenshot

6. Even if a message doesn't have data associated with it, we must provide it with an
empty body, and empty footer. Create an EmptyBody by clicking on the blue "+" by Body,
select "New", then create a new Body with Name "EmptyBody", leaving the other fields
blank. Press “Save and Close” when done. Do the same for Footer, creating a new Footer
with name "EmptyFooter".

JTS Users Guide, Ver 2.0 Copyright 2013 Page 50 of 265

tool set

& 1AUS

& Howsad; = & tewbocter -8
‘NWBO"Y m m ‘NewFoom 0D
Nt [{r_}.{[i\l]) Sivw Nama: | SrapnFocesr] _‘757;"'3*
e pretaon | [Gancal coigestton. [] St |
waz Tl a oM Flald + (EamadnzOpasy| omples = <id. 44 |Comgicx Flad + __Save fina Elosa |

| Oroatea O 15122010 11:49 I Couated On. OS122010 1150

Figure 13: New Body / Footer Screenshot
7. Since our message has no additional data associated with it, select ‘Save And

Close’. This enters the new message in the database, which we’ll use later to create our

service definition.

8. Repeat steps 2-6 to create the ReportHeartbeatPulse message with an ID of 4202h.
This time, however, you do not need to create a new EmptyBody and EmptyFooter, since
they have already been defined. So, instead of selecting "New" when you click the blue "+",
select "Browse", and pick the existing elements from the list. Once completed, double
clicking on the ‘Message Defs’ icon in the Model Element column should show a dialog box

with both messages defined:

@ Message Defs (2) -0 x
&Message Defs (2) OB8 3 D
[Message DefName v |[contains [v] | | [Go]

Q QueryHeartbeatPulse 0x2202 [MessageDef]
€ ReportHeartbeatPulse 0x4202 [MessageDef]

Figure 14: Message Def List Screenshot

Now that we’ve defined the messages (vocabulary) that our simple services uses, we need to

model the protocol which dictates the rules for message exchange.

8.3 Describe the Protocol

The protocol behavior for our ping client and server were described in Section 8.1. Here we
convert our design into a JTS models. We'll need two different models: one for the server, and

one for the client.

1. From the Model Elements list, right click the ‘Protocol Behaviors’ icon and select ‘New’

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 51 of 265

tool set

&aus
-

g

Simple Fields

i

Pro{ 4, Browse

Beh{ New

% Find
Smart List

Manage Restrictions

Open

Figure 15: New Protocol Screenshot

2. This opens the ‘New Protocol Behavior’ layout tool. The layout tool provides a drag-
and-drop utility to design protocol behaviors using the same state-machine like syntax used
through the SAE JAUS documents. The layout tool provides a menu bar, behavior

elements selection column, and a workspace

[T — C372
New Protocet Sahavior
DA & el3 0

forsen Fwrem

Layout Work

Figure 16: Protocol Ul Screenshot

3. First, we have to create a new Finite State Machine to contain our states and
transitions. Drag a "Finite State Machine" icon from the Behavior Elements List to the Layout
Workspace. Drag and grow the box to increase the size, since it will contain our states.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 52 of 265

f: JAUS

tool set

Figure 17: Insert FSM Screenshot

4, Double-Click on the FSM box in the Layout Workspace, and when the edit window
appears, type in "name = PingServerProtocol; isStateless = true".

5. Now, right-click on the FSM box in the Layout Workspace, and select
Shape->EnterGroup from the context menu. This pushes us down the stack into the FSM,

SO we can add states.

6. Now, we have to add states for the ping server, which responds with a
ReportHeartbeatPulse whenever a QueryHeartbeatPulse message is received. Drag a
‘State’ icon from the Behavior Elements List to the Layout Workspace and double click it to

give it a name of “Ready”

Figure 18: Add Ready State Screenshot

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 53 of 265

tool set

¥ jAus
‘a

7. Since this is the only state in our protocol definition, we need to tell the JTS to start
in this state. This is achieved through a ‘Pseudo Start State’ icon and an automatic
transition. Drag a ‘Pseudo Start State’ icon from the Behavior Elements List to the Layout

workspace, then connect it to the Ready state with a Simple Transition:

Wosiags Dafsy

i

& 2
I
g -

Sample Fisias

L

Figure 19: Add Pseudo Start State Screenshot

8. We can now add an Internal Transition that starts and ends back at the Ready state

,,,,,

Simgle Fleids

Figure 20: Add Internal Transition Screenshot

JTS Users Guide, Ver 2.0 Copyright 2013 Page 54 of 265

tool set

2 JAUS

9. Next, we parameterize the transition, defining the trigger, guard, and actions design
in as specified in Section 8.1 for our server. Double-clicking on the transition opens a text
box for editing. The syntax for a transition is:

| trigger (param type value, ..) [guard]/action(argl,..) |

where ‘value’, ‘arg1’, and ‘guard’ are all optional. For our server, the trigger is specified as
QueryHeartbeatPulse() / sendReportHeartbeatPulse(). This means that the transition will be
named "QueryHeartbeatPulse" and that when it is triggered, and action named
"sendReportHeartbeatPulse" will occur. Double click on the transition link to bring up an edit
field and enter the trigger specification text "QueryHeartbeatPulse() /
sendReportHeartbeatPulse()". When you click outside the edit window, the displayed text is
shortened to just the trigger:

vl w7 e t3 44

rssige Dets (
A

i ‘

Caomplex Fleids D \

deruyieasads caPulnst)
t Defautt Stan

Simple Fleles ir

Figure 21: Add Trigger Screenshot

10. Now, our state machine for the Ping Server is complete. Right click on the Layout
Window, and select Shape->ExitGroup, and you should see the following:

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 55 of 265

tool set

FJAUS

s ,,:cu.

Figure 22: Complete State Screenshot

11. Now, we need to save the protocol. To do this, click on the save icon (the floppy disk

in the upper left), and save the file as "PingServer.mxe" in a directory of your choice.

12. With the protocol behavior for the ping server complete, we can now model the
protocol for the ping client. Repeat steps 1-10 as above, except name the FSM
"PingClientProtocol", and use the client specific transition "ReportHeartbeatPulse() /
printToScreen()":

Ready
ReportHeartbeatPulse()/printToScreen()

Figure 23: Ping Client State Layout Screenshot

13. This defines the protocol to handle an incoming ReportHeartbeatPulse message, but
will still have to add the entry action that broadcasts the query when we enter the Ready
state on start-up. This is added as a text tag to the state name. Double-click the state and
edit the text to make it read “Ready; entry: broadcastQueryHeartbeatPulse()”:

Note: The “entry” keyword must be lower-case.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 56 of 265

& 1AUS

tool set

Ready; Entry; tf:roadcastQueryHe rtbeatPulse(]

ReportHeartbeatPulse()/printToScreen()

Figure 24: Ping Client State Layout With Trigger Screenshot

14. Again as in step 12, save the protocol as PingClient.mxe, and close the window.

We now have models for both the client and server protocol. Double-click the ‘Protocol
Behaviors’ icon in the Model Elements list to open the protocol behavior filter. This will show the

two protocol state machines we just defined:

@ Protocol Behaviors (2) B
q\Protocol Behaviors (2) = m]
[Protocol Behavior Protocol Behavior # ”contains IV] [] rGo | :

> PingServerProtocol [ProtocolBehavior]
PingClientProtocol [ProtocolBehavior]

Figure 25: Protocol Behavior List Screenshot

The next step will put it all together into a service, and ultimately a component for deployment.

8.4 Build the Service

With the messages and protocol defined, we can how combine them into a service definition.

1. From the Model Elements list, right click the ‘Service Defs’ icon and select ‘New’

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 57 of 265

2 JAUS

tool set

2. This opens the ‘New Service Def dialog box. Each service must have a unique
name, urn-based identifier, and version. A description and assumptions field is also

required. For our ping server, we’'ll use the following:

e Bencs Out -Ci N,
Wy New Service Def P D
N Mg
[2 Megtanw S L LA
Viersioee |10 Save Ar Giown |
fvv.. Samnie IR0 e GLeAtaarbedFalie mestiges
Batal rapd s wilth Mapa0de irbiaddl uti e medsuges
Dt iiplise
Asvirwtoss: | roos
tierte fom @ e 0ot | o
« Ot
®reusa | B
*Cupteg |
Evem Des 00)
(Paahoce! Bananal) | o
[Coastant 5] | o
’ D
Ex : s | 1 Iaharty 1
. BT22910 128

Figure 26: New Service Def Screenshot

3. We must tell JTS which messages our service will handle. This is defined as an
Input Set. Click the blue plus (“+”) sign next to [Input Set] and select ‘New’

Assumptions: [Mone. |

Inherits From: "8 [Service Det] o

Client Of, Service Defs (0)

Constant Set: n [Zonstant Set] +

input Set. B8 [Input Sef |+

output Set [[Output Sety |- IEW
—————— Browse
Ewvent Defs: Event Defs {0} Find

Protocol Behavior: [[Fratocal Behavior |+

Figure 27: New Input Set Creation Screenshot

4. This opens the New Input Set dialog box. We'll use “PingServerlnputs” as our input
set name. Then select the plus (“+”) sign next to Message Defs to open the input set editor.
In the editor, select the blue plus sign and select ‘Browse’

JTS Users Guide, Ver 2.0 Copyright 2013 Page 58 of 265

$JAUS

tool set

e

B Mew Input Set

. New Input Set El D
Name: [FingServerinputs |
Input Set Message Defs Cave And Close
hMessage Defs: +
Plew
Browse
4 Find

| Created On: O7/3002009 13:14

Figure 28: New Input Set Screenshot

5. In the List Picker dialog, we can quickly select which messages form the input set.
In this case, only the QueryHeartbeatPulse message is used. Highlight the query message,
then press the green arrow to add it to the Input Set Message Defs list.

e pAsiBon. -~
tnpe Sot Message Defe
+ |-

| | Cuspieattnaruse 1C202 plassage

| Message Derome w | cotans [v T |
@ CusrHtatterruse (2 Mascapelen
@ Mgt it s uie CoAZ00 Wt sgelt

9

Qerm |

Figure 29: Input Set List Picker Screenshot

6. Select ‘Done’ in the List Picker dialog and ‘Save And Close’ on the New Input Set
dialog. The PingServerinputs set should now be added as inputs to our service

Constant Set: B [Constant Sef] -|-

Input Set: gPingSer\rerlnputs [InputSef] |x

output et B0 [Output Set) | =k

Event Defs: Event Defs (0

Frotocol Behavior: B [Protocal Behavior] | -I-

Figure 30: Ping Service Inputs Screenshot

7. Repeat steps 3-6 to create a New Output Set called PingServerOutputs. This tells
JTS which messages our new service will output. In this case, select ReportHeartbeatPulse

from the List Picker.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 59 of 265

"JAUS

tool set

w MewSentce et DX
Wy New Service Def -

M [PingServe] l ju I

(93 ‘;u'n ;I:i'-':}“"”' [~ Q;nml n

Versisn |10 L Saye And Close ‘

Thig samvice Istens fof Querpdsarbieatiulse massages
and replas wih Repor=Santb2aF 1SS Massap=s

Descriphion:

SEHES g
et O 4 Semace Defs {0)
rput Sat QVFumEal'.annmm PrputSet) x
it Sat 9 PingSaverdutpats |Duputset) | X
EvemiDuls 2 Evert Dets (0)
Pratocal etvavier; L Protocei Sehovind | 4

53t ForstamSst) | o

Ratars

Blem ”" “ (SamiceDars (chamOt haritsFrom), Senke Se1s)

Cragled On 0522010 1215

Figure 31: New Service Def Populated Screenshot

8. Finally, we associate the protocol behavior for our new service. Select the blue plus
(“+”) sign next to [Protocol Behavior] and select ‘Browse’. From within the list picker, select

‘PingServerProtocol’ and click ‘pick’.

Frotocol Behavior: n [Frotocal Behaviar] | +

Baze Service To: Service Defs (0 Mew
Server To: Service Defs (00 S.rn:rse
11
Refarencing Service)
Sets: Service Sets ()
Figure 32: Add Protocol Behavior Screenshot
9. Click ‘Save and Close’ to save this new service definition to the database.

10. With the PingServer defined, repeat steps 1-9 to define the PingClient service. Note
that the input set for the client consists only of the ReportHeartbeatPulse message, while
the output set contains only the QueryHeartbeatPulse message. The Protocol Behavior

should be ‘PingClientProtocol’.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 60 of 265

’, JAUS

tool set

™ HewSanace Dot -0 X
.:' New Service Def

(S And Close

This serdce nadeasts 3 QuenHearbastPuse message
on siathup, than daplayes 3 Meesage on e scroon when
ITretabeas 3 RepotHagthagiPulss messags n sponss

Descriphon:

1
Assumptmans: | Hone |

Inteins fFlom J | - ‘ +

Chant Ot = Semce Defu (D)

Input Set @ PngCliensnputSst gnputsaty | X
Output Set ' PingCliemOuputsst jouputssq | X
Event Doty ¥ Evont Dafs (0

Provcol Bahawor [PngClien®rotocol [ProtocolBshavion | %

Constant Se1 B [Constart S=y ‘ -

Referancng

Clarmprpe oemesDefs [chenOL InherRsFrom), Senite Sets)

Created On: 051422010 1219

Figure 33: New Service Def Populated Screenshot

11. To verify that both server and client services have been defined, double-click the

Service Defs icon from the Model Elements list to display the Service Defs list box:

@ Service Defs (2). -0 X
[Service Defs (2) = o m
\[Service DefName v |[contains [v] | |

W PingServerv1.0 [ServiceDef]
W PingClientv1.0 [ServiceDef]

Figure 34: Service Def List Screenshot

With our services defined, we next examine how to combine one or more services into a

component before generating the code.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 61 of 265

tool set

&1Aus

8.5 Create a Component

A component represents a collection of services available at a unique transport address. In
practical terms, the JAUS Tool Set only generates code for a component; we must therefore
combine our messages and protocol into services which in turn become part of a service set
before being integrated into a component. This section provides step-by-step instructions for

making a component that includes both the ping server and client.
From the Model Elements list, right click the ‘Components’ icon and select ‘New’

1. This opens the ‘New Component’ dialog box, shown in Figure 35: New Component
Screenshot. Each component has a name and component ID. The component ID is a
number between 1 and 254 that must be unique within the node. We'll give our
PingComponent an ID of 120.

% New Component -0 X
.'-
’;&5 New Component B2 O
Name: |PingComp0nent | [695.“ |
ID: I Cancel |
l |

Save And Close

Interpretation: [|

Service Sets: ([l Service Sets (0)

s

Created On: 0171372011 15:07

Figure 35: New Component Screenshot

2. We must tell JTS which services our component will host. This is defined as a
Service Set. Click the plus (“+”) sign next to ‘Service Sets’ to open the Component Service

Sets editor. Click the blue plus (“+”) and select ‘New’ to define a new service set:

JTS Users Guide, Ver 2.0 Copyright 2013 Page 62 of 265

tool set

’, JAUS

fg New Component

B @D

Name: IPingComponem]

Intetpretation: | |

B Service Sets (0)

Service Sets: ‘+ =

~Component Service Sets-

MNew
Browsk

Find

Save And Close

Created On: 01/13/2011 15:07

Figure 36: New Component Populated Screenshot

3. This opens the New Service Set dialog box.

We'll use “PingServiceSet” as our

service set name, adding a unique 1D and meaningful description:

 ewsenwce s
EE New Service Set

-0X

Name; ijg‘Sem(a3e1
D: {um 25 PingSemceSel

Version: |1 0

Ping Client senvice

Dencriphor

Tha Ping Sarvce Set includes both he Ping Sarver and the

Sorvice Ders B Sence Dets (0)
constant Ssty # Constam Sets (0)

Raferanong

iCo wents)
Elernents {Components)

2 D
| Gancel |

(S e

l Croaled On 051242010 12:23

Figure 37: New Service Set Screenshot

4, Then select the plus (“+”) sign next to Service Defs to open the Service Set Service
Defs editor. In the editor, select the blue plus sign and select ‘Browse’

JTS User’s Guide, Ver 2.0

Copyright 2013

Page 63 of 265

tool set

¥ jaus

w e Service Sel

@ New Service Set

Name: |PingSeniceSet

eSet

B |uemcjis

Version: |10

[The Ping Semice Setincludies bofh e Ping Sesver and Ping
Cliert senice

Description

B Sermite Defis {0
Service Set Service Defs
Serace Defs +
Mew
| Browse |
- Find

Figure 38: Add Service Def Screenshot

5. In the List Picker dialog, we can quickly select which services definitions form the
service set. In this case, we select both the PingServer and PingClient, then press the

green arrow to add them to the Service Set Service Defs list.

Service Set Service Defs l envica DetName v | [contains 'v‘ 1 1 7'5‘
+ Lomires ey = - [——J
W PingChent vt 0 {Sendcaben W PingSecvur vi 0 Secaceleof
W PingSener v 0iSanceDel e W PingCent v1.0 [SemceDeq
9

[Done |

Figure 39: Pick Service Def Screenshot

6. Select ‘Done’ in the List Picker dialog and ‘Save And Close’ on the New Service Set

dialog. The PingServiceSet should now be added to our component:

JTS Users Guide, Ver 2.0 Copyright 2013 Page 64 of 265

& 1AUS

tool set

“4 New Component s

$ New Component E O

Name: |PingCnmpunent |

Interpretation; | |
Bl Service Sets (1)

Component Service Seks

Service Sets: + _ %

'% FingSenicesSetw1.0 [ServiceSed]

Created On: 0111352011 15:07

Figure 40: Populated New Component Screenshot
7. Click ‘Save and Close’ to save this new component to the database.

If generating C++ code, continue to section 8.6. If generating Java code skip to section
8.7, and if generating C# skip to section 8.8.

8.6 Generate C++ Source and Integrate User Code

With our component modeled, we can use the JAUS Tool Set to generate source code that will
adhere to the interface description we defined. The messages are created as classes, the
framework is established that supports intra- and inter-component communication, and the
protocol functions are defined as easy-to-understand stubs. The goal of generated code is to
allow an engineer to quickly flesh out the protocol stubs and test a running system. This section

describes the process for our simple ping client and server component in C++,

1. From the Model Elements list, double click the ‘Components’ icon to bring up the
selection dialog box. Right click the PingComponent, and select “Auto Generate
Code”

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 65 of 265

tool set

& JAUS

& Components (13

\ﬂrComponents (1) OB &30

| Component Name = ||cnntain5 |v| | | | Go |

& PingComponent I0: 1 [Component]

Qpen
& Edit
3 Delete
E copy
Export To JSOM
@ Refresh

Auto Generate Code

Figure 41: Generate Source Screenshot

2. The “Select Code Generation Options” dialog appears. Select the output directory
and leave C++ as the selected output language. Note “Use last” restores the
previous path used when generating code, and “Browse” will display a directory
browse dialog so the user can avoid typing the output path by hand. Click “Generate
Code” to continue.

Select Code Generation Options x|

Select Cutput Parent Directory

|C:Isenrices_nutput1 | | Browse.. | | Use Last |

[@ C+r {% O c# O Java

[Generate Code | | Cancel |

Figure 42: Select Code Generation Options Dialog

3. The generated code is placed in a directory named ‘PingComponent_120’, beneath
the directory selected in the Select Code Generation Options dialog. Using
“C:\services_output” as in Figure 42, generated code would be placed in
C:\services_output\PingComponent_120.

4. We need to implement the behavior specified by the ping server protocol.

Examining PingComponent_120/src/urn_jts_PingServer_1 0/PingServerProtocol.cpp, we
find the pre-generated function stub for the actions associated with the

QueryHeartbeatPulse transition:

JTS Users Guide, Ver 2.0 Copyright 2013 Page 66 of 265

/ JAUS

tool set

volid PingServer::sendReportHeartbeatPulseAction ()

{
/// Insert User Code HERE

}
We must add the code that allows the server to respond with a Report Heartbeat Pulse

message. In this case, we use the built-in sendJausMessage() function to send the

response back to the local component:

void PingServer: :sendReportHeartbeatPulseAction ()

{
// Send a RHP message to the local component.
ReportHeartbeatPulse response;
sendJausMessage (response, *jausRouter->getJausAddress());

5. With the server implementation complete, we now flesh out the client behavior. The

relevant stubs defined in src/urn_jts_PingClient_1 0/PingClientProtocol.cpp are:

void PingClient: :broadcastQueryHeartbeatPulseAction ()

{
/// Insert User Code HERE

}

void PingClient::printToScreenAction ()

{
/// Insert User Code HERE

}
These two actions are responsible for sending a Query Heartbeat Pulse message, as well

as printing an output message when a response is received. As with the Server
implementation, we use the built-in sendJausMessage() function to route the Query
Heartbeat Pulse to the local component:

void PingClient: :broadcastQueryHeartbeatPulseAction ()

{
QueryHeartbeatPulse query;
sendJausMessage (query, *jausRouter->getJausAddress())

}

void PingClient::printToScreenAction ()

{
printf ("Hello World!\n");

}

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 67 of 265

tool set

¥ JAUS

With our code complete, we’re now ready to build and run our ping component as described in
section 8.9.

8.7 Generate Java Source Code and Integrate User Code

With our component modeled, we can use the JAUS Tool Set to generate source code that will
adhere to the interface description we defined. The messages are created as classes, the
framework is established that supports intra- and inter-component communication, and the
protocol functions are defined as easy-to-understand stubs. The goal of generated code is to
allow an engineer to quickly flesh out the protocol stubs and test a running system. This section

describes the process for our simple ping client and server component in Java.

1. From the Model Elements list, double click the ‘Components’ icon to bring up the
selection dialog box. Right click the PingComponent, and select “Auto Generate
Code”

2. The “Select Code Generation Options” dialog appears. Select the output directory
and select Java as the selected output language. Note “Use last” restores the
previous path used when generating code, and “Browse” will display a directory
browse dialog so the user can avoid typing the output path by hand. Click “Generate

Code” to continue.

3. The generated code is placed in a directory named ‘PingComponent_120’, beneath
the directory selected in the Select Code Generation Options dialog. Using
“C:\services_output” as in Figure 42, generated code would be placed in
C:\services_output\PingComponent_120.

4. We need to implement the behavior specified by the ping server protocol.

Examining PingComponent_120/src/urn_jts_PingServer_1 0/
PingServer_PingFSM.java, we find the pre-generated function stub for the actions
associated with the QueryHeartbeatPulse transition:

public void sendReportHeartbeatPulseAction ()

{
/// Insert User Code HERE

}

JTS Users Guide, Ver 2.0 Copyright 2013 Page 68 of 265

/ JAUS

tool set

We must add the code that allows the server to respond with a Report Heartbeat

Pulse message. In this case, we use the built-in sendJausMessage() function to
send the response back to the local component:

public void sendReportHeartbeatPulseAction ()

{
// Send a RHP message to the local component.
ReportHeartbeatPulse response = new ReportHeartbeatPulse () ;
sendJausMessage (response, jausRouter.getJausAddress())

5. With the server implementation complete, we now flesh out the client behavior. The

relevant stubs defined in src/urn_jts_PingClient_1 0/PingClient_PingFSM.java are:

public void broadcastQueryHeartbeatPulseAction ()
{

/// Insert User Code HERE
}

public void printToScreenAction ()
{

/// Insert User Code HERE
}

These two actions are responsible for sending a Query Heartbeat Pulse message, as well
as printing an output message when a response is received. As with the Server

implementation, we use the built-in sendJausMessage() function to route the Query
Heartbeat Pulse to the local component:

public void broadcastQueryHeartbeatPulseAction ()

{
QueryHeartbeatPulse query = new QueryHeartbeatPulse() ;
sendJausMessage (query, jausRouter.getJausAddress())

}

public void printToScreenAction ()
{

System.out.println ("Hello World!");
}

With our code complete, we’re now ready to build and run our ping component as described in
section 8.9.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 69 of 265

tool set

¥ JAUS

8.8 Generate C# Source Code and Integrate User Code

With our component modeled, we can use the JAUS Tool Set to generate source code that will
adhere to the interface description we defined. The messages are created as classes, the
framework is established that supports intra- and inter-component communication, and the
protocol functions are defined as easy-to-understand stubs. The goal of generated code is to
allow an engineer to quickly flesh out the protocol stubs and test a running system. This section

describes the process for our simple ping client and server component in C#.
1. Follow steps 1 and 2 from section 8.7, selecting C# instead of Java in step 2.

2. The generated code is placed in a directory named ‘PingComponent_120’, beneath
the directory selected in the Select Code Generation Options dialog. Using
“C:\services_output” as in Figure 42, generated code would be placed in
C:\services_output\PingComponent_120.

3. We need to implement the behavior specified by the ping server protocol.

Examining PingComponent_120/src/urn_jts_PingServer_1 0/PingServer_PingFSM.cs, we
find the pre-generated function stub for the actions associated with the

QueryHeartbeatPulse transition:

public void sendReportHeartbeatPulseAction ()

{
/// Insert User Code HERE

}

We must add the code that allows the server to respond with a Report Heartbeat Pulse
message. In this case, we use the built-in sendJausMessage() function to send the

response back to the local component:

public void sendReportHeartbeatPulseAction ()

{
// Send a RHP message to the local component.
ReportHeartbeatPulse response = new ReportHeartbeatPulse() ;
sendJausMessage (response, jausRouter.getJausAddress());

JTS Users Guide, Ver 2.0 Copyright 2013 Page 70 of 265

/ JAUS

tool set

4. With the server implementation complete, we now flesh out the client behavior. The
relevant stubs defined in src/urn_jts_PingClient_1_0/ PingClient_PingFSM.cs are:

public void broadcastQueryHeartbeatPulseAction ()

{
/// Insert User Code HERE

}

public void printToScreenAction ()

{
/// Insert User Code HERE

}

These two actions are responsible for sending a Query Heartbeat Pulse message, as well

as printing an output message when a response is received. As with the Server
implementation, we use the built-in sendJausMessage() function to route the Query

Heartbeat Pulse to the local component:

public void broadcastQueryHeartbeatPulseAction ()

{
QueryHeartbeatPulse query = new QueryHeartbeatPulse();
sendJausMessage (query, jausRouter.getJausAddress())

}

public void printToScreenAction ()

{

Console.WriteLine ("Hello World!");

}

With our code complete, we’re now ready to build and run our ping component.

8.9 Build the System

Compiling generated code requires a host of tools including python, scons, and standard C++
libraries for all generated languages. Generated C# and C++ will also require a compiler such as
the one provided with Visual Studio, and Java requires the Java Runtime Environment. For a full
list of supported operating systems and required tools, please see section 3.2 Environment. The
Code Generator automatically creates the required SCons build scripts to make the component,
all selected services, and the integrated framework. To start the build process, simply type

‘scons’ from the command line in the PingComponent_120 directory:

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 71 of 265

tool set

&1Aus

DanelMART IN-Laptopd
% pud
Soygdrive/c/ JTSAP ingComponent _1

DarneldMART IN-Laptopd
$ =consf]

Figure 43: Ping Compile Command Screenshot

Once the build process is completed, the PingComponent_120 executable is generated in the

PingComponent_120/bin directory. To run C++, simply execute it from the command line:

$> cd bin
$> ./PingComponent 120

for Linux or

$> cd bin
$> PingComponent 120.exe

for Windows.

To run Java, execute the following line from the command line in any system:

$> cd bin
$> java —jar PingComponent 120.jar

To run C#, execute the following line from the command line in Windows:

$> cd bin
$> PingComponent 120.exe

Note that there may be a short delay and a warning message while the Framework attempts to
contact the Node Manager. This is normal, and will be discussed further in Section 16.

Eventually, the “Hello World!” message will be displayed on the screen.

Now that our simple “Ping” example is complete, we’ll take a look at a more complex example

that uses multiple components.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 72 of 265

tool set

& 1AUS

9 Creating your Second Service: Adding Two
Numbers

In this section, we provide a walkthrough of how to create a service by importing existing JSIDL.

The workflow is again bottom up, broken into the following steps:

1. Import JSIDL for the client and server service definitions

2. Create Service Sets for the client and server

3. Create Components for the client and server

4. Generate code for the client and server

5. Modify the generated code to add application behavior

6. Execute a communications component, and the client and server

By the end of this section, you should be comfortable importing JSIDL from the SAE services,

and generating code which you modify for application specific behavior.

9.1 Identify the Interface

In this example, we consider a simple client/server that implements addition. The client sends

two numbers to the server, the server adds them and returns the result.
The server supports the following messages:
e Input: QueryAddition // has a body with two unsigned integers

e Output: ReportAddition // has a body with one unsigned integer

The server behavior is represented with a simple state machine as shown below:

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 73 of 265

&1Aus

tool set

transitionToReady / serverlnitialized ;

RHeady,

queryAdditiond...) ! sendReportAddition(...) ;

Figure 44: Addition Server FSM

This FSM consists of two states: Init and Ready. There is an entry transition for Init, a transition
from Init to Ready, and a self transition within Ready.

The client supports the following messages:
e Input: ReportAddition

The client behavior is represented with a simple state machine as shown below:

Initenfry: serviceStartd(...);

transitionToReady / senicelnitialized ;

Ready;

reportAdditionReceived(...) / printAnswerToScreen(...) ;

—J

Again, we see two states: Init and Ready, with a similar transition structure to the server.

Figure 45: Addition Client FSM

JTS Users Guide, Ver 2.0 Copyright 2013 Page 74 of 265

(

¥ JAUS

tool set

{

9.2 JSIDL Import

Note: The service definition files you will need for this section are located in: exam-
ples/xml/Addition/

JSIDL import for the client and server service definitions is straightforward. Upon starting JTS,

do the following:

1. Right Click on "Service Defs" and select Import. In the Import JSIDL dialog that appears
(Figure 46), browse to the directory containing the AdditionClient service def, select the
client service def's JSIDL file, and then click OK.

Import JSIDL |

Select a JSIDL XML file ar directory containing JSIDL XMLz files, then click Impart.

|C:‘Ladditinn_senfice_defsil | | Browse | | Default |

[Import | | Cancel |

S

Figure 46: Import JSIDL Dialog

2. Right Click on "Service Defs" and select Import. Browse to the directory containing the

AdditionServer service def, select the server service def's JSIDL, then click OK

As the services are imported, you will see flashing messages in the JTS window indicating
successful import of various entities. Confirm this by double clicking on "Message Defs",
"Complex Fields", and "Protocol Behaviors", and you should see the following, shown in Figure
47:

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 75 of 265

tool set

&Aus
P

[Oyove |
B , o x] g—
> Complex Fields (3) Service Defs (2
Components l omp g ervice Defs (2) 0

@' I Complex Fields = "typeis [v] IRec'ord [Senice DefName & Hcontains [~]

.-

Service Sets |4 HeaderRecord [Recard] \ U AdditionServerServiceDefv1.0 [ServiceDef]
|46 Additioninput [Record] |y AdditionClientServiceDefv1.0 [ServiceDef]
|44 AdditionOutput [Record]

e &

Message Defs

&2

Simple Fields Q Protocol Behaviors (2)

| Protocel Behavior Protocal Behavior w | [contains v

P

Protocol | [AdditionServerSenviceDer additionSenverF M [ProtocalBehavior]
Behaviors [AdditionClientSenviceDef additionClientFSM [ProtocolBehavior]

[Oaamn

|. Complex Fields (3)' @ Service Defs (2) ||

Figure 47: Entities After Addition Client/Server Import

Note: We recommend you drill down into the various elements that have been defined to explore
message content, service layout, protocol layout, etc.

9.3 Creating the Service Sets

Once the service definitions are imported, the service sets have to be defined. A service set
contains one or more service definitions. The service set for the server will contain the service
definition for the server while the service set for the client will contain the service definition for

the client. Create the service sets as follows:
1. For the Server: Right click on Service Set, and select "New". Fill in the fields as follows:

¢ Name: AdditionServerServiceSet

e |D: addition.server.serviceset

JTS Users Guide, Ver 2.0 Copyright 2013 Page 76 of 265

$JAUS

tool set

Version: 1.0

Description: A service set for addition

ServiceDef: Add the AdditionServerServiceDef service definition to the list by clicking
on the "+" icon, and selecting "Browse", the pick the correct server from the list.

Click on "Save"

Once you are done, the New Service Set window should look like this:

L tewSwece i DX
S New Service Set D

Mmu:..rldununSénquer-viéé(: - ‘_"SZI

Canal |

|

ID: | 3ddB0n SEWI SaNIKUGY

version: [10 | Save And Coue

A SSMI0 B&t for 3dMan

Desinpion

£ Sevita Dats (1)

Service Sat Servie Defy

u
; AddtiorSenerSardcelef vi (1 Seracell
e | _,_'
Consztant Sets (0)
ting 100]
ERrrents [Compansnis)
| 3y » -
l[Crestel Qv 0NZ7201013:25

Figure 48: New Addition Service Set Screenshot

2. For the Client: Follow the same procedure as above. Fill in the fields as follows:

Name: AdditionClientServiceSet

ID: addition.client.serviceset

Version: 1.0

Description: A service set for addition

ServiceDefs: Again, click on the "+" icon, select "Browse", and add the
AdditionClientServiceDef to the list. Click "Done".

Click "Save"

Once you are done, the New Service Set window should look like this:

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 77 of 265

tool set

&1Aus

EE pew Sence Set -0 X
iy "
=¥ New Service Set =)
Name: |AddiianClientSenviceSe|
1D: |}addition.client.ser\ricese|
Version: |1.D | Sawe And Close

A service setfor addition.

Cescription:

E Serice Defs (1)

~3ervice Set Service Defs

&

W AdditionClientServiceDefv1 .0 [ServiceD

Service Defs:

<] [3]

Constant Sets: Constant Sets (0)

Referencing

Elements; 1-0mponents}

‘ Created On: 05/27/201013:28

Figure 49: Populated Addition Server Set Screenshot

9.4 Create the Components

Now that the service sets are created, we need to create the actual components that will contain
the service sets. We need to create a client and server component. Each component will be a
self-contained executable, with a scons-based make system, and all common files included (i.e.,

no external dependencies).
To create the server component, do the following:
1. Right-click on Components, select "New". Then enter the following:

¢ Name: AdditionServerComponent
e |D: 150 (this is the JAUS Component ID of the component)
e ServiceSets: Click on the "+", then click on the blue "+" and select "Browse". Then
select "AdditionServerServiceSet", click the green arrow, and click "Done"
3. Click "Save"
4. Click "Auto Generate Code", and specify an output path in the dialog, keeping C++ as the

output language. Click “Generate Code” when ready.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 78 of 265

& 1AUS

tool set

5. Now navigate to the output path directory from step 4, and you should see a new directory
called "AdditionServerComponent_150". This contains the auto-generated files we will be
modifying.

To create the Client component, do the following:

1. Right-click on Components, select "New". Then enter the following:

¢ Name: AdditionClientComponent

e |ID: 151 (this is the JAUS Component ID of the component)

e ServiceSets: Click on the "+", then click on the blue "+" and select "Browse". Then

select "AdditionClientServiceSet", click the green arrow, and click "Done"
Click "Save"
Click "Auto Generate Code" and specify an output path in the dialog. If generating C++,
leave the C++ radio button selected. Otherwise, select the appropriate radio button to
generate Java or C# code. Click “Generate Code” when ready.
4. Now navigate to the output path directory from step 4, directory, and you should see a new

directory called "AdditionClientComponent_151". This contains the auto-generated files we

will be modifying.

9.5 Modify the C++ Server Component

Note: Working client/server code with all of the application behavior described below already avail-
able in JTS/examples/AdditionClientComponent_151 and
JTS/examples/AdditionServerComponent_150. The underlying directory structure (particular-
ly where the *FSM.cpp file is stored might be slightly different than below). You can examine
this if you run into issues or problems with modifying the code yourself.

Since the generated code only defines stub actions, we need to add application-level behavior to

the server component. We will only need to examine / modify the following files:

AdditionServerComponent 150
| src
lurn jaus example addition server 1 0
| AdditionServerServiceDef additionServerFSM.cpp
| AdditionServerServiceDefService.cpp

Note: By default, this example uses Subsystem 126, Node 1, Component ID 150.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 79 of 265

tool set

¥ JAUS

Now, we want to modify the Finite State Machine to add behavior code. We therefore modify
AdditionServerServiceDef_additionServerFSM.cpp to populate the entry action that is
associated with the Init state. In this code snippet, we invoke an internal event to transition us

from Init to Ready.

void AdditionServerServiceDef additionServerFSM::fsmStartedAction ()
{

/// We now generate an internal event, which will be handled up

/// above, resulting in a transition call to move us from

/// Init to Ready

std::cout << "Addition server started\n";

ieHandler->invoke (new InitToReadyEventDef ()) ;

std::cout << "Sent internal event to transition to Ready\n";

On system start-up, this code will fire off an internal event. The generated code will ‘catch’ this
event, automatically transition the state machine from Init To Ready, and call the
servicelnitializedAction(). For this example, there is no action to take in this transition, but we fill

out the code for completeness as below.

void AdditionServerServiceDef additionServerFSM::serverInitializedAction ()
{

/// Insert User Code HERE

/// This is the action for the transitionToReady Transition.

/// Add in whatever code is needed when transitioning from

/// Init to Ready

std::cout << "Transitioned from Init to Ready. Ready to begin adding!\n";

// Nothing else needs to be done here. We'll sit in

// READY until we get a QueryAddition

// message. When that happens, we'll trigger a self-transition
// back into READY that

// computes the answer and sends it back to the requestor.

In the Ready state, we expect to receive a QueryAddition message. When this message is
received, the generated code automatically executes the appropriate transition and calls the

sendReportAdditionAction. This handler code is offered below, and does the following:
1. Extracts the two numbers to be added from the incoming QueryAddition message

2. Adds them

JTS Users Guide, Ver 2.0 Copyright 2013 Page 80 of 265

/ JAUS

tool set

3. Creates a ReportAddition message with the result, and sends it to the component that sent

us the QueryAddition message.

void AdditionServerServiceDef additionServerFSM::sendReportAdditionAction (
QueryAddition msg, unsigned int sender)
{
/// Insert User Code HERE
int Al=msg.getAdditionInputBody () ->getAdditionInput ()->getAl () ;
int A2=msg.getAdditionInputBody () ->getAdditionInput ()->getA2() ;

// Now, let’s pull out the two numbers we received
std::cout << " Need to add " << Al << " 4+ " << A2 << std::endl;

// Now let's formulate a response

int answer;

answer = Al + A2;

ReportAddition theAnswer;

theAnswer.getAdditionOutputBody () —>
getAdditionOutput () ->setAdditionResult (answer) ;

// Encode the response and send it back to the requestor.
sendJausMessage (theAnswer, JausAddress (sender));

std::cout << "answer sent to client\n";

This function takes two arguments: the message that triggered the transition as well as an
unsigned integer representing the sender’s address. The code generator is able to resolve the
message argument and pass in the appropriate value without any additional input from the user.
However, when the function contains basic types (unsigned byte, unsigned short, unsigned int,
or unsigned long), the code generator cannot automatically determine the value for these
arguments. By default, basic types will be uninitialized and will display a warning message at
run-time. In order to pass the proper value to the function, we need to modify some of the

automatically generated code in AdditionServerServiceDefService.cpp.

This file represents the ‘wiring’ for the state machine; that is, the code generator automatically
calls the appropriate state transition when the trigger is received. The “QueryAddition” trigger

will contain the following lines:

unsigned int sender;
printf ("WARNING! Using parameter 'sender' without initialization!\n");

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 81 of 265

¥ JAUS

tool set

We need to initialize the ‘sender value with the 4-byte address of the client that sent the
message. This can be found in the Receive event that triggered the transition. The Receive
event stores the sender’s address as three numbers: a two-byte subsystem identifier, a one-byte
node identifier, and a one-byte component identifier. This is sometimes represented as an
unsigned integer, where the subsystem id is stored in the highest order bits and the component

id is stored in the lowest order bit. Hence, we initialize ‘sender’ using these values:

unsigned int sender =
(casted ie->getBody () ->getReceiveRec () ->getSrcSubsystemID() << 16) +
(casted ie->getBody () ->getReceiveRec () ->getSrcNodeID() << 8) +
(casted ie->getBody () -—>getReceiveRec () ->getSrcComponentID()) ;

It is important to note that this modification to the generated code is only required when
transition arguments use primitive types. When possible, use messages and events as
transition parameters, rather than primitive types. For example, by inheriting from a
TransportService such as that defined by [AS5710], the sender’s address can be represented by

Receive.Body.ReceiveRec which will be handled automatically by the code generator.

9.6 Modify the C++ Client Component

Now, we need to add application-level behavior to the server component. We will only need to

examine and modify the following file:

AdditionClientComponent 151
| src
lurn jaus_ example addition client 1 0
|[AdditionClientServiceDef additionClientFSM.cpp

We want to modify the Finite State Machine in AdditionClientServiceDef additionClientFSM.cpp
to add behavior code. First, we have to populate the entry action that is associated with the Init
state, just as we did in the server. In this code snippet, invoke an internal event to transition us

from Init to Ready.

void AdditionClientServiceDef additionClientFSM::serviceStartedAction /()
{

/// Insert User Code HERE

std::cout << "Addition client started\n";

/// We now generate an internal event, which will be handled up
/// above, resulting in a transition call to move us from

JTS Users Guide, Ver 2.0 Copyright 2013 Page 82 of 265

/ JAUS

tool set

/// Init to Ready
ieHandler->invoke (new InitToReadyEventDef ()) ;
std::cout << "Sent internal event to transition to Ready\n";

As with the server, the internal event will cause the state machine to transition from Init to
Ready. During this transition, we want to send a QueryAddition message to the server using the
servicelnitializedAction() in the Finite State Machine. The code below creates the message, and
sends a query message to add 500 + 500.

void AdditionClientServiceDef additionClientFSM: :serviceInitializedAction ()
{

/// Insert User Code HERE

std::cout << "In Ready state. Let's start adding...\n";

// This is the basic message type for our query.
QueryAddition query;

// The message contains a body, with a record.
query.getAdditionInputBody () ->getAdditionInput () ->setAl (500) ;
query.getAdditionInputBody () ->getAdditionInput () ->setA2 (500) ;

// Send the response to the server on this subsystem and node. The
// Component ID is fixed at 150.
JausAddress server (jJausRouter->getJausAddress () ->getSubsystemID() ,
jausRouter->getJausAddress () ->getNodeID (),
150) ;

// Encode the request and send it to the server.
sendJausMessage (query, server);

std::cout << "Send addition request\n";

When a ReportAddition message is received, the generated code will execute a self-transition
back to the Ready state, calling the printAnswerToScreenAction as a result. This action takes

the incoming message as a parameter, and prints the answer out to the screen:

void AdditionClientServiceDef additionClientFSM: :printAnswerToScreenAction (
ReportAddition msqg)
{
/// Insert User Code HERE
std::cout << "Transitioned back to Ready\n";
std::cout << " The answer is "
<< msg.getAdditionOutputBody () —>getAdditionOutput () ->getAdditionResult ()
<< std::endl;

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 83 of 265

/ JAUS

tool set

L |

Now that the code is written, we need to compile it, and execute the Node Manager, Server, and
Client.

9.7 Modify the Java Server Component

Note: Working client/server code with all of the application behavior described below is already
available in JTS/examples/AdditionClientComponent_151 and
JTS/examples/AdditionServerComponent_150. The generated folder names will be different
than the examples below). You can examine this example code if you run into issues or prob-
lems with modifying the code yourself.

Since the generated code only defines stub actions, we need to add application-level behavior to

the server component. We will only need to examine / modify the following files:

AdditionServerComponent 150
| src
lurn jaus_ example addition server 1 0
| AdditionServerServiceDef additionServerFSM.java
| AdditionServerServiceDefService.java

Note: By default, this example uses Subsystem 126, Node 1, Component ID 150.

Now, we want to modify the Finite State Machine to add behavior code. We therefore modify
AdditionServerServiceDef_additionServerFSM.java to populate the entry action that is
associated with the Init state. In this code snippet, we invoke an internal event to transition us

from Init to Ready.

public void fsmStartedAction ()

{
/// We now generate an internal event, which will be handled up
/// above, resulting in a transition call to move us from
/// Init to Ready
System.out.println ("Addition server started");
ieHandler.invoke (new InitToReadyEventDef ()) ;
System.out.println ("Sent internal event to transition to Ready"):;

On system start-up, this code will fire off an internal event. The generated code will ‘catch’ this

event, automatically transition the state machine from Init To Ready, and call the

JTS Users Guide, Ver 2.0 Copyright 2013 Page 84 of 265

/ JAUS

tool set

servicelnitializedAction(). For this example, there is no action to take in this transition, but we fill

out the code for completeness as below.

public void serverInitializedAction ()

{
/// This is the action for the transitionToReady Transition.
/// Add in whatever code is needed when transitioning from
/// Init to Ready

System.out.println ("Transitioned from Init to Ready. Ready to begin add-
ing!");

// Nothing else needs to be done here. We'll sit in

// READY until we get a QueryAddition

// message. When that happens, we'll trigger a self-transition
// back into READY that

// computes the answer and sends it back to the requestor.

In the Ready state, we expect to receive a QueryAddition message. When this message is
received, the generated code automatically executes the appropriate transition and calls the

sendReportAdditionAction. This handler code is offered below, and does the following:
2. Extracts the two numbers to be added from the incoming QueryAddition message
2. Adds the two numbers together.

3. Creates a ReportAddition message with the result, and sends it to the component that sent

us the QueryAddition message.

public void sendReportAdditionAction (QueryAddition msg, long sender)
{
long Al=msg.getAdditionInputBody () .getAdditionInput () .getAl ()
long A2=msg.getAdditionInputBody () .getAdditionInput () .gethA2() ;

// Now, let’s pull out the two numbers we received
System.out.println (" Need to add " + Al + " + " + A2);

// Now let's formulate a response

long answer;

answer = Al + A2;

ReportAddition theAnswer = new ReportAddition () ;

theAnswer.getAdditionOutputBody ()
.getAdditionOutput () .setAdditionResult (answer) ;

// Encode the response and send it back to the requestor.
sendJausMessage (theAnswer, new JausAddress (sender));

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 85 of 265

tool set

/ JAUS

System.out.println ("answer sent to client");

This function takes two arguments: the message that triggered the transition as well as an
unsigned integer representing the sender’s address. The code generator is able to resolve the
message argument and pass in the appropriate value without any additional input from the user.
However, when the function contains basic types (unsigned byte, unsigned short, unsigned int,
or unsigned long), the code generator cannot automatically determine the value for these
arguments. By default, basic types will be uninitialized and will display a warning message at
run-time. In order to pass the proper value to the function, we need to modify some of the

automatically generated code in AdditionServerServiceDefService.java.

This file represents the ‘wiring’ for the state machine; that is, the code generator automatically
calls the appropriate state transition when the trigger is received. The “QueryAddition” trigger

will contain the following lines:

long sender;
System.out.println ("WARNING! Using ©parameter 'sender’ without
initialization!\n");

We need to initialize the ‘sender value with the 4-byte address of the client that sent the
message. This can be found in the Receive event that triggered the transition. The Receive
event stores the sender’s address as three numbers: a two-byte subsystem identifier, a one-byte
node identifier, and a one-byte component identifier. This is sometimes represented as an
unsigned integer, where the subsystem id is stored in the highest order bits and the component

id is stored in the lowest order bit. Hence, we initialize ‘sender’ using these values:

long sender = (long)
(casted ie.getBody () .getReceiveRec () .getSrcSubsystemID() << 16) +
(casted ie.getBody () .getReceiveRec () .getSrcNodeID() << 8) +
(casted ie.getBody () .getReceiveRec () .getSrcComponentID()) ;

It is important to note that this modification to the generated code is only required when
transition arguments use primitive types. When possible, use messages and events as
transition parameters, rather than primitive types. For example, by inheriting from a
TransportService such as that defined by [AS5710], the sender’s address can be represented by

Receive.Body.ReceiveRec which will be handled automatically by the code generator.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 86 of 265

¢ JAUS

tool set

9.8 Modify the Java Client Component

Now, we need to add application-level behavior to the server component. We will only need to

examine and modify the following file:

AdditionClientComponent 151
|src
lurn jaus example addition client 1 0
|[AdditionClientServiceDef additionClientFSM.java

We want to modify the Finite State Machine in AdditionClientServiceDef_additionClientFSM.java
to add behavior code. First, we have to populate the entry action that is associated with the Init
state, just as we did in the server. In this code snippet, invoke an internal event to transition us

from Init to Ready.

public void serviceStartedAction ()

{
System.out.println("Addition client started");

/// We now generate an internal event, which will be handled up
/// above, resulting in a transition call to move us from

/// Init to Ready

ieHandler.invoke (new InitToReadyEventDef ());
System.out.println ("Sent internal event to transition to Ready"):;

As with the server, the internal event will cause the state machine to transition from Init to
Ready. During this transition, we want to send a QueryAddition message to the server using the
servicelnitializedAction() in the Finite State Machine. The code below creates the message, and

sends a query message to add 500 + 500.

public void serviceInitializedAction ()

{
System.out.println ("In Ready state. Let's start adding...");

// This is the basic message type for our query.
QueryAddition query = new QueryAddition () ;

// The message contains a body, with a record.
query.getAdditionInputBody () .getAdditionInput () .setAl ((long)500) ;
query.getAdditionInputBody () .getAdditionInput () .setA2 ((long) 500) ;

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 87 of 265

¥ JAUS

tool set

// Send the response to the server on this subsystem and node. The

// Component ID is fixed at 150.

JausAddress server = new JausAddress (
jausRouter.getJausAddress () .getSubsystemID(),
jausRouter.getJausAddress () .getNodeID(),

(short) 150);

// Encode the request and send it to the server.
sendJausMessage (query, server);

System.out.println ("Send addition request");

When a ReportAddition message is received, the generated code will execute a self-transition
back to the Ready state, calling the printAnswerToScreenAction as a result. This action takes

the incoming message as a parameter, and prints the answer out to the screen:

public void printAnswerToScreenAction (
ReportAddition msg)
{
System.out.println("Transitioned back to Ready");
System.out.println(" The answer is "
+ msg.getAdditionOutputBody () .getAdditionOutput () .getAdditionResult ()) ;

Now that the code is written, we need to compile it, and execute the Node Manager, Server, and
Client.

9.9 Modify the C# Server Component

Note: Working client/server code with all of the application behavior described below already avail-
able in JTS/examples/AdditionClientComponent_151 and
JTS/examples/AdditionServerComponent_150. The underlying directory structure (particular-
ly where the *FSM.cs file is stored might be slightly different than below). You can examine
this if you run into issues or problems with modifying the code yourself.

Since the generated code only defines stub actions, we need to add application-level behavior to

the server component. We will only need to examine / modify the following files:

AdditionServerComponent 150
| src
|lurn jaus example addition server 1 0
| AdditionServerServiceDef additionServerFSM.cs
| AdditionServerServiceDefService.cs

JTS Users Guide, Ver 2.0 Copyright 2013 Page 88 of 265

tool set

/ JAUS

Note: By default, this example uses Subsystem 126, Node 1, Component ID 150.

Now, we want to modify the Finite State Machine to add behavior code. We therefore modify
AdditionServerServiceDef_additionServerFSM.cs to populate the entry action that is associated
with the Init state. In this code snippet, we invoke an internal event to transition us from Init to

Ready.

public void fsmStartedAction ()

{
/// We now generate an internal event, which will be handled up
/// above, resulting in a transition call to move us from
/// Init to Ready
Console.WritelLine("Addition server started ");
ieHandler.invoke (new InitToReadyEventDef ()) ;
Console.WritelLine("Sent internal event to transition to Ready");

On system start-up, this code will fire off an internal event. The generated code will ‘catch’ this
event, automatically transition the state machine from Init To Ready, and call the
serverlnitializedAction(). For this example, there is no action to take in this transition, but we fill

out the code for completeness as below.

public void serverInitializedAction ()

{
/// This is the action for the transitionToReady Transition.
/// Add in whatever code is needed when transitioning from
/// Init to Ready

Console.WritelLine ("Transitioned from Init to Ready. Ready to begin adding") ;

// Nothing else needs to be done here. We'll sit in

// READY until we get a QueryAddition

// message. When that happens, we'll trigger a self-transition
// back into READY that

// computes the answer and sends it back to the requestor.

In the Ready state, we expect to receive a QueryAddition message. When this message is
received, the generated code automatically executes the appropriate transition and calls the

sendReportAdditionAction. This handler code is offered below, and does the following:

3. Extracts the two numbers to be added from the incoming QueryAddition message

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 89 of 265

tool set

¥ JAUS

2. Adds them

3. Creates a ReportAddition message with the result, and sends it to the component that sent
us the QueryAddition message.

public void sendReportAdditionAction (
QueryAddition msg, uint sender)
{
uint Al=msg.getAdditionInputBody () .getAdditionInput () .getAl () ;
uint A2=msg.getAdditionInputBody () .getAdditionInput () .getA2() ;

// Now, let’s pull out the two numbers we received
Console.WriteLine(" Need to add " + A1 + " + " + A2);

// Now let's formulate a response

uint answer;

answer = Al + A2;

ReportAddition theAnswer = new ReportAddition () ;

theAnswer.getAdditionOutputBody () .
getAdditionOutput () .setAdditionResult (answer) ;

// Encode the response and send it back to the requestor.
sendJausMessage (theAnswer, new JausAddress (sender));

Console.WritelLine("answer sent to client");

This function takes two arguments: the message that triggered the transition as well as an
unsigned integer representing the sender’s address. The code generator is able to resolve the
message argument and pass in the appropriate value without any additional input from the user.
However, when the function contains basic types (unsigned byte, unsigned short, unsigned int,
or unsigned long), the code generator cannot automatically determine the value for these
arguments. By default, basic types will be uninitialized and will display a warning message at
run-time. In order to pass the proper value to the function, we need to modify some of the

automatically generated code in AdditionServerServiceDefService.cs.

This file represents the ‘wiring’ for the state machine; that is, the code generator automatically
calls the appropriate state transition when the trigger is received. The “QueryAddition” trigger

will contain the following lines:

uint sender;
Console.WriteLine ("WARNING! Using parameter 'sender' without
initialization!\n");

JTS Users Guide, Ver 2.0 Copyright 2013 Page 90 of 265

tool set

/ JAUS

We need to initialize the ‘sender value with the 4-byte address of the client that sent the
message. This can be found in the Receive event that triggered the transition. The Receive
event stores the sender’s address as three numbers: a two-byte subsystem identifier, a one-byte
node identifier, and a one-byte component identifier. This is sometimes represented as an
unsigned integer, where the subsystem id is stored in the highest order bits and the component

id is stored in the lowest order bit. Hence, we initialize ‘sender’ using these values:

uint sender = (uint)
((casted ie.getBody () .getReceiveRec () .getSrcSubsystemID() << 16) +
(casted ie.getBody () .getReceiveRec () .getSrcNodeID() << 8) +
(casted ie.getBody () .getReceiveRec () .getSrcComponentID())) ;

It is important to note that this modification to the generated code is only required when
transition arguments use primitive types. When possible, use messages and events as
transition parameters, rather than primitive types. For example, by inheriting from a
TransportService such as that defined by [AS5710], the sender’s address can be represented by

Receive.Body.ReceiveRec which will be handled automatically by the code generator.

9.10 Modify the C# Client Component

Now, we need to add application-level behavior to the server component. We will only need to

examine and modify the following file:

AdditionClientComponent 151
|src
|lurn jaus_ example addition client 1 0
|[AdditionClientServiceDef additionClientFSM.cs

We want to modify the Finite State Machine in AdditionClientServiceDef_additionClientFSM.cs
to add behavior code. First, we have to populate the entry action that is associated with the Init
state, just as we did in the server. In this code snippet, invoke an internal event to transition us

from Init to Ready.

public void serviceStartedAction ()

{

Console.WritelLine("Addition client started"):;

/// We now generate an internal event, which will be handled up

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 91 of 265

tool set

¥ JAUS

/// above, resulting in a transition call to move us from

/// Init to Ready

ieHandler.invoke (new InitToReadyEventDef ());

Console.WritelLine("Sent internal event to transition to Ready");

As with the server, the internal event will cause the state machine to transition from Init to
Ready. During this transition, we want to send a QueryAddition message to the server using the
servicelnitializedAction() in the Finite State Machine. The code below creates the message, and

sends a query message to add 500 + 500.

public void serviceInitializedAction ()

{

Console.WritelLine("In Ready state. Let's start adding...");

// This is the basic message type for our query.
QueryAddition query = new QueryAddition () ;

// The message contains a body, with a record.
query.getAdditionInputBody () .getAdditionInput () .setAl (500) ;
query.getAdditionInputBody () .getAdditionInput () .setA2 (500) ;

// Send the response to the server on this subsystem and node. The

// Component ID is fixed at 150.

JausAddress server = new JausAddress (
jausRouter.getJausAddress () .getSubsystemID(),
jausRouter.getJausAddress () .getNodeID() ,

150) ;

// Encode the request and send it to the server.
sendJausMessage (query, server);

Console.WritelLine("Send addition request");

When a ReportAddition message is received, the generated code will execute a self-transition
back to the Ready state, calling the printAnswerToScreenAction as a result. This action takes

the incoming message as a parameter, and prints the answer out to the screen:

public void printAnswerToScreenAction (
ReportAddition msg)
{
Console.WritelLine("Transitioned back to Ready");
Console.WritelLine(" The answer is "
+ msg.getAdditionOutputBody () .getAdditionOutput () .getAdditionResult ()) ;

JTS Users Guide, Ver 2.0 Copyright 2013 Page 92 of 265

tool set

& 1AUS

Now that the code is written, we need to compile it, and execute the Node Manager, Server, and
Client.

9.11 Compiling and Executing the Client and Server

The Code Generator generates a full build system, based on scons. Therefore, the user only has

to execute scons to build the generated components. This is done as follows:

o
\

cd ~/JTIS/GUI/Components/AdditionClientComponent 151
scons

o o° o
vV V V

cd ~/JTS/GUI/Components/AdditionServerComponent 150
scons

o
\

In addition, the Node Manager needs to be compiled as well. The Node Manager is responsible
for message passing between components located on the same computer or remotely. Compile

the node manager using scons:

%> cd ~/JTS/nodeManager
%> scons

Now, open up three terminals, one each for the Node Manager, Server, and Client:

Start the Node Manager

%> cd ~/JTS/nodeManager/bin
%> ./NodeManager.exe nm.cfg

On Linux

%> cd /JTS/nodeManager/bin
%> NodeManager.exe nm.cfg

On Windows

By default, the Node Manager does not display output.

Start the Server

$> cd ~/JTS/GUI/Components/AdditionServerComponent 150/bin/
%> ./AdditionServerComponent 150.exe

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 93 of 265

tool set

/ JAUS

In C++ on Linux,

%> cd ~/JTS/GUI/Components/AdditionServerComponent 150/bin/
%> Jjava -jar AdditionServerComponent 150.jar

in Java,

%> cd /JTS/GUI/Components/AdditionServerComponent 150/bin/
%> AdditionServerComponent 150.exe

In C++ and C# on Windows,

You should see output similar to the following:

$./AdditionServerComponent 150.exe

Addition server started

Sent internal event to transition to Ready
Transitioning to Ready

Transitioned from Init to Ready. Ready to begin adding!

Start the Client

%> cd ~/JTS/GUI/Component/AdditionClientComponent 151/bin/
%> ./AdditionClientComponent 151.exe

In C++ on Linux,

$> cd ~/JTS/GUI/Components/AdditionClientComponent 151/bin/
%> java -jar AdditionClientComponent 151.jar

in Java,

%> cd /JTS/GUI/Components/AdditionClientComponent 151/bin/
%> AdditionClientComponent 151.exe

In C++ and C# on Windows,

You should see output similar to:

Addition client started

Sent internal event to transition to Ready
Transitioning to Ready

In Ready state. Let's start adding...

Send addition request

Transitioned to Ready
The answer is 1000

While the server prints:

Need to add 500 + 500
answer sent to client

JTS Users Guide, Ver 2.0 Copyright 2013 Page 94 of 265

tool set

‘v ¥ JAUS

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 95 of 265

tool set

$JAUS

10 Defining Message Elements

In this section we outline how to interact with the GUI to create the elements that make up

messages. This includes simple and complex fields, as defined in AS-5684.

We recommend you read the AS-5684 section titled "Message Encoding". In particular, reference
Figure 5 for a hierarchy of field types.

10.1 Simple Fields

To create a simple field, right click on the simple field selection on the left hand of the GUI, and
select "New". The first thing you will be asked to do is select the type of Simple Field you wish to

create. Your options are:
e Fixed Field: The basic field that is used to contain ints, shorts, characters, etc.

e Bit Field: A bit field assigns specific meaning to individual bits within a primitive data
type

e Variable Length Field: This is a simple field whose length can vary at run time. It is

preceded by a meta field called a count_field that specifies the size of the data in bytes.
o Fixed Length String: A fixed length character array

e Variable Length String: A variable length character array. The data in a variable length

string is preceded by a count_field that specifies the size of the data in bytes.

e Variable Format Field: This field contains a BLOB whose format can vary at runtime. It
is preceded by two Meta Fields called format_field and count_field in that order. These

Meta Fields specify the format and size of the BLOB in bytes respectively.

e Variable Field: This field allows for run-time selection of the type and units. It is

preceded by a type_and_units_enum that specifies type and units
e Array: An array is a single or multi-dimensional collection of simple fields.
Each simple field has a set of required and optional parameters in common. These are:

o Name: The unique name of the simple field (required)

JTS Users Guide, Ver 2.0 Copyright 2013 Page 96 of 265

$JAUS

tool set

o Optional: If true, a presence vector bit is assigned. If false, the field is required.
(required)

e Interpretation: A textual interpretation of the field (optional)

In addition, you will see a list of all instances of higher level objects (containers such as records)
where the simple field is used.

Specific instructions on field creation are below. Each field is described with a screenshot of the

field creation window, with numbered annotations describing each entry unique to the field.

10.1.1 Fixed Field

v NewFixed Field T = W
.4 New Fixed Field B D
\
Name: |
|
Optional? OYes @ No
Type: l Iv] +— 1
Units: | [v] €&— 2

Interpretation: I l
ScaleRange:@ﬂ}(&aleﬁ’ange} vl ‘_ 3

value Set: [(value Set] | b = 4

Referencing Arrays: B Arrays (0)

Referencing Records: Records (0)

Figure 50: Fixed Field Entry
1. The C primitive value type of the fixed field
2. The unit of the fixed field
3. An optional range that can be used for scales

4. Value Set: TODO->add description

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 97 of 265

tool set

& JAUS

10.1.2 Bit Field

\ /’ New Bit Field E O

Name: ||

Optional? OYes @ No
Save And Close

[

[

I
Type:l |v| <+ 1
Sub Fields: ® Sub Fields {0} *_ 2

Interpretation: | |

Referencing Arrays: Arrays (0)

Referencing Records: # Records (0)

Figure 51: Bit Field Entry
1. The C primitive value type of the fixed field

2. Sub Fields: The subfields describe individual bit fields in terms of bits they span and
real values those bits can take on (e.g., bits 3-5 can take on values of 0-3)

JTS Users Guide, Ver 2.0 Copyright 2013 Page 98 of 265

& JAUS

tool set

10.1.3 Variable Length Field

4 NewVariable Length Field =0 x
\ /' New Variable Length Field B D

D sae

Name: ||

Optional? OYes @ No

| Cancel |
| Save And Close |

Interpretation:

Field Format: | |v| <= 1
Min Size: Ijl 4 2
Max Size: lj' <4 3
|

Referencing Arrays: Arrays (0)

Referencing Records: Records (0)

Figure 52: Variable Length Field Entry
1. The format of the variable length field
2. The minimum size of the variable length field (must be greater than 1)

3. The maximum size of the variable length field (must be greater than minimum size)

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 99 of 265

tool set

FJAUS

10.1.4 Fixed Length String

/' NewFixed Lengin String sy
N\ /' New Fixed Length String

5o
Name: [) save I
) [Cancel |
Optional? OYes @ No
| Save And Close |
String Length:ljl <4 1
Interpretation: I |
Referencing Arrays: Arrays (0)
Referencing Records: Records (0)

Figure 53: Fixed Length String Entry

1. The length of the string. A string length must be greater than zero.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 100 of 265

& JAUS

tool set

10.1.5 Variable Length String
A\ /' New Variable Length String
Name: |
Optional? @ Yes @ No

MinLength:[j 4 1
MaxLength:[j *_ 2

Interpretation: l

Referencing Arrays: Arrays (0)

Referencing Records: Records {0)

Figure 54: Variable Length String Entry

-0 X

|
I
l

Cancel |
Save And Close |

1. The minimum length of the string. A string length must be greater than zero.

2. The maximum length of the string. Must be greater than the minimum string length.

JTS User’s Guide, Ver 2.0

Copyright 2013

Page 101 of 265

tool set

& JAUS

10.1.6 Variable Format Field
/' NewVariable Format Field maChoe 6
\ /' New Variable Format Field 5 o

Name:

Optional? OVYes @ No

Min Size: lj —
MaxSize:lj Gp—

1
2
Format Field: [(FormatField] | 4+ <— 3

— |
[Cancel |
[l

Save And Close

Interpretation: | |

Referencing Arrays: Arrays (0)

Referencing Records: B Records (0)

Figure 55: Variable Format Field Entry
1. The minimum length of the string. A string length must be greater than zero.
2. The maximum length of the string. Must be greater than the minimum string length.

3. Format Field: The format field allows you to enter a list of allowable formats for this
field.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 102 of 265

’, JAUS

tool set

10.1.7 Array

\ / New Array E
@) save |
Cancel |
l

Name: [
I
l

Optional? O Yes @ No
Save And Close

Array Element Type: W [Simple Field] | o 4 1
Dimensions: ! Dimensions (0) 4 2

Interpretation: I |

Referencing Arrays: B Arrays (0)

Referencing Records: B Records (0)

Figure 56: Array Entry
1. The simple field type that the array is made up of

2. The dimensions of the array: The dimensions of the array range from 1...n.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 103 of 265

tool set

&1Aus

10.1.8 Variable Field

\ / New Variable Field I m

Optional? OYes @ No

Name: [) save |
[Cancel |
| Save &nd Close |

Interpretation: | |

Type And Units Tvbe And Units E s (0 L
g + Type And Units Enums (0) < 1

Referencing Arrays: Arrays (0)

Referencing Records: Records (0)

Figure 57: Variable Field Entry

1. Alist of all types and unit enums defined for the variable field

10.2 Complex Fields

A complex field contains one or more simple fields. The most common complex field is the
Record, which is used to hold a sequence of simple fields. The Record forms the basis for many

SAE JAUS messages. JTS supports the following complex fields:
e Record: Arecord is an arrangement of one or more simple fields or arrays.

e Lists: A list is a variable sized sequence of composite fields, such as records,

sequences, and variants.

e Sequences: A sequence is an arrangement of one or more composite fields (excluding
arrays).
e Variants: A variant is a composite field that can hold zero or one of several different

types of pre-defined composite fields at runtime.

To create a complex field, right click on the simple field selection on the left hand of the GUI. All

complex fields have a required name box that you enter the unique name of the simple field into

JTS Users Guide, Ver 2.0 Copyright 2013 Page 104 of 265

tool set

$JAUS

All complex fields also have an optional Boolean which allows you to set whether the simple field
is optional when it is included in a record or array. All complex fields also have an optional

interpretation box that can be used to describe the simple field for later reference

All complex fields have a list of all instances of where the complex field is used. The references
on these lists can be modified by double clicking on the reference in question.

10.2.1 Record

A record represents an arrangement of one or more Simple Fields or arrays leading to a

heterogeneous or homogeneous set that is ordered.

\&# New Record w8l
\ & New Record B D
Name: |) save

Optional? OYes @ No
Save And Close

Simple Fields: (¥ Simple Fields () <= 1

Interpretation: | l

Referencing Headers: Headers (0)
Referencing Bodies: ® Bodies (0)
Referencing Footers: B Footers (0)

Referencing Lists: Lists {0}

Referencing
Sequences:

Referencing 5
Variants: # Variants (0)

Sequences (0)

Figure 58: Record Entry

1. Alist of simple fields defined for this record.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 105 of 265

2 JAUS

tool set

10.2.2 List

A list field represents a variable sized sequence of Composite fields of the same type, with the

exception of array

L& Mew List] i
\ ¢ New List =
Name: |
Optional? O Yes @& Mo
hir Size:ljl “_ 1
MaxSize:ljl s —
List Elernent Type: W [Cormplex Field) ‘ 4 4 3

Interpretation: |

Referencing Headers:
Referencing Bodies:
Feferencing Footers:

Referencing Lists:

Referencing
Seguences:

Referencing
Wariants:

Figure 59: List Entry

Headers (1)
Bodies (0
Faooters (03
Lists ¢

Sequences {0}

Wariants (0

1. Required minimum size of the list. Must be greater than zero.

2. Required maximum size of the list. Must be greater than the minimum size.

3. The type of complex field that makes up the list

JTS Users Guide, Ver 2.0

Copyright 2013

Page 106 of 265

2 JAUS

tool set

10.2.3 Sequence
A sequence represents an arrangement of one or more Composite Fields (excluding arrays)

leading to a heterogeneous or homogeneous sequence

i Mew Sequence e
\@NewSequence Em

Optional? QO VYes @ Mo
Save And Close
Bl Complex Fields (0) 4 1

~Sequence Complex Fields

g =

Complex Fields:

Interpretation: |

Referencing Headers: Headers (0}

Referencing Bodies: Bodies (0}

Referencing Footers: Footers (0}

&3]

Referencing Lists: B Lists (0

Referencing
Sequences:

[+

Sequences (0)

Referencing]
vatiants (0
Yatiants: o

Figure 60: Sequence Entry

1. Alist of the complex fields defined for this sequence

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 107 of 265

tool set

2 JAUS

10.2.4 Variant

A variant represents a composite that can hold zero or one of several different types of pre-

defined composite fields at runtime

L& Mew Yariant
\@ New Variant

Name:

Optional?

Complex Fields:

Interpretation:
Referencing Headers:
Referencing Bodies:
Referencing Footers:

Referencing Lists:
Feferencing
SeqUences:

Refarencing
Wariants:

O¥es @ Mo

B Complex Fields (0)

~‘ariant Complex Fields

e 3

< 1

Headers (07

Bodies (0}

Footers {0)

[E3]

E Lists (0)

+ Sequences (M)

Yatiants (0)

s
E @

Save And Close

Figure 61: Variant Entry

1. Alist of the complex fields defined for this variant

JTS Users Guide, Ver 2.0

Copyright 2013

Page 108 of 265

(

¥ JAUS

tool set

{

10.3 Complex Field Examples

10.3.1 Array Example

Our example will be packing RGB information in a multidimensional array. Since we are using
an array, we can only use one type of simple field for the array's primitive values. We will be
using a bit field because it is the most logical choice for representing a choice of red, blue or
green as byte values. The array we will be defining is shown below.

(R, G, B) (R, G, B) (1000th)
(R, G, B)
(1000th) (1000th)

This is a 1000x1000 array with a 3x1 vector at each index

This array can be thought of as storing the information needed to display a picture to a screen.
Each 3x1 vector or R,G,B values stores the color value that needs to be displayed at a certain

index on the screen. We need to create a simple field of array type

4 New Array e
\\/’ New Array B O

Name: |AnrayExample |
Optional? QOYes @ Mo
Save And Close

Array Elerment Type: OF [Simple Field)] | -I-

B Dimensions (@ | MNew
Browse |
Find

—#rray Dimensions

Dimensions: +

Interpretation: |

Referencing Arrays: Arrays (0

Referencing Recards: Records (0}

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 109 of 265

2 JAUS

tool set

Figure 62: New Array Example Screenshot

We can next set the Array Element Type as a bit field which will hold our R,G,B values. Now we
add the array dimensions. There are 4 dimensions that needed to be added because we are
storing an array of size 3x1 in an array size 1000

A Mew Array -0 x
\/ﬂ New Array E D

Name: |ArravExampIe |
Optional? QO Yes @ No
Save And Close

Array Element Type: W RGE_sample_hitfield [BitField] | X

B Dimensions (3)
Array Dimensions
& =
Dirmensions: b vactard [Dimension]
B vectar1 000_1 [Dimensian]
B vectort 000_2 [Dimension]

Interpretation: | |

Referencing Arrays: Arrays ()

Referencing Records: Records (0)

Figure 63: New Array Populated Screenshot

JTS Users Guide, Ver 2.0 Copyright 2013 Page 110 of 265

tool set

& 1AUS

10.3.2 Record Example

Continuing from the Array Example, we would now like to store this picture data in a record.

However, we would also like to store when the picture was taken and by whom it was taken.

This can be achieved by creating two Simple Fields of types Variable Length String that will hold
the person's name and a date/time. We are also going to dictate that the order in which it is

stored will be: Name, Date, Picture. This is purely by choice and not necessity.

First we create the two new Simple Fields:

\& New Record s [T X
\é¢ New Record Em
Name: |RecordExample
Optional? OYes @ No
Save And Close
I Simple Fields (2)
~Record Simple Fields
Bimele Fislas |1/ User_name [VariableLengthString]
[\/ Date_time [VariahleLengthString]

Referencing Headers: ® Headers {0)

Dafavansina Dadian F Rodiaa (MY

Figure 64: New Record Simple Fields Screenshot

Then since we already created the array, we need to add the array by browsing to its definition
and then adding it to the Record's simple fields

Cecoed Seghe Pudsh — —

;_" =1 Simple Fisigs w | [hoe s |w] |Fiesd Fisigs v 6o
-

User_name VarislalenghStng| ! oGk ikl 2l (IO |

¥ Data_tene [VariakigLenghSring) [ROB_Sampl e difald BtFicd)

[User_name ManstietanginGiing

[Diate_time (Var sl engindiing

€

[one |

Figure 65: New Record Add Array Screenshot

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 111 of 265

tool set

2 JAUS

10.3.3 List Example

Building upon the Record Example, we will now create a list of those picture records. We might

need a list such as this if multiple pictures were being taken. For instance, if we wanted our list
to be able to store anywhere between three and 10 records we would set the list as below. We

also pick our previous example through the browse button for the “list element type”.

A& Newlist = B
\ib# New List 5 o

| @ save | |
[Cancel]
I |

Save And Close

Name: List_Example

Optional? OVYes @ No

Min Size:
Max Size:

List Element Type: \& ArrayHolder2 [Record] | X

Interpretation: | |

Referencing Headers: B Headers (0)

Referencing Bodies: Bodies {0)

Mafmvminnitm Fambav~: [+ Eantare iM

Figure 66: List Example Screenshot

JTS Users Guide, Ver 2.0 Copyright 2013 Page 112 of 265

2 JAUS

tool set

10.3.4

Variant Example

If we extend our Record Example and List Example, we can create a Variant that can hold either

of these types depending on runtime declarations. This would be useful in a situation where we

may only want to have a single picture record at runtime whereas other times we may want the

list of pictures at runtime. Simply browse to the previously created items and pick them as

member of the new variant.

|£:| ListPicker S o - 4
—variant Complex Figlds———————— - -
+ | Complex Fields + ||nrp9|s |V| |Rec0rds |V| [Go |
& ArrayHolder? [Record] & List_Example [Lis)
& List_Exarnple [Lisf @ e
& NewVariant. -0 x
\@ New Variant 4]
- A B}
Name: I\/anant_Example | —) save
|
Optional? O Yes @ No
Save And Close

Complex Fields:

Interpretation:
Referencing Headers:

Referencing Bodies:

{7 Sl

El Complex Fields (2)
~Yariant Complex Fields -

e
& ArrayHolder2 [Record)
\& List_Example [Lisi]

Headers (D)

Bodies {0}

[Coantarve

Figure 67: Variant Example Screenshot

JTS User’s Guide, Ver 2.0

Copyright 2013

Page 113 of 265

tool set

2 JAUS

10.3.5 Sequence Example

Creating sequences is the same as creating Variants. However, since they can take multiple
values at runtime, they may be used to create complex data structures by holding multiple
nested complex fields. We will create a simple example of a graph by representing its nodes

and edges in a sequence

B C

Figure 68: Sequence Example Graph

First we will need a list to store all of the edges for each node in the graph. Each element of the

list will be a record with the edge name in it.

& AEdges List -0 X
\@ A_Edges [List] 2 o
Name: 4_Edges l / Edit
Optional? Mo 24 Delete
Export To JSON
Min Size: III I
[& Refresh
Max Size:

List Element Type: & edge [Record] |

Interpretation: --
Referencing Headers: B Headers (0)

Referencing Bodies: Bodies (0)

Deafavannina Cantave: [Fantera M]

Figure 69: Sequence Example List Entry

Next we will need a sequence to store the node name and edges connected to each node:

JTS Users Guide, Ver 2.0 Copyright 2013 Page 114 of 265

&)Aus

tool set

\@ A_Node

Name: A_Node

~ iz

[Sequence]

]

{
’”o

Optional? No

B ComplexFields (2)
-Sequence Complex Fields

de =

Complex Fields: & A_Name [Record]

\& A_Edges [List]

sl
ol

Interpretation: --

Referencing Headers: Headers (0)

Rafarancing Badiae: # Rndies M
Figure 70: Sequence Example Node Entry

After replicating this procedure for all the other nodes of the graph, we will create a sequence

with three sequences; one for each node of the graph. This will serve as a container for all the

nodes of the graph.

\& New Sequence -0 x
\@ New Sequence E m
Name: ISequenceExample I
|
Optional? OYes @ No

I Complex Fields (3)

~Sequence Complex Fields —————————
+ = |
Complex Fields: & A_Node [Sequence]
& B_Node [Sequence]
& C_Node [Sequence]

Interpretation: I

Referencing Headers: ® Headers (0)

Referencing Bodies: # Bodies (0)

Figure 71: Sequence Example Sequence Creation

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 115 of 265

¥ jaus

tool set

Note that we are only defining the structure of the graph. Its contents will be described at
runtime.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 116 of 265

¥ Jaus

tool set

11 Defining Messages

In this section, the construction of message definitions is outlined with examples of their creation

and functionality. Message Defs describe how data will be serialized so that it may be

transferred over the network.

Service Defs

CompleX gmart List

Manage Restrictions
\ Open
Simple Fields

Figure 72: New Message Def Screenshot

¢ Message Defs need a name and a unique ID number which identifies the message. The

name only needs to be unique within its parent context. The description box is optional

and allows a user to describe the message for later reference.

JTS User’s Guide, Ver 2.0

Copyright 2013 Page 117 of 265

&1Aus

tool set

*\Uv New Message Def

Name: [Examplewlessage]

ID (2 byte hex): {1212 |

This is a description of the Message

Description:

IsCommand? OYes @ No

Figure 73: New Message Def Populated Screenshot

e The next section of the Message Definition box is the header, body, and footer tabs.
These you choose what information will be added to each section of the message. To

add information, click on the plus sign and select New, Browse or Find.

Is Command? O Yes @ ho

Header: B Header) | =

|
Body: B Boay) | o MEW

Browse

Footer: B [Footer] Find

Referencing Input Inout Sets (0
Sets: 2 o

Figure 74: New Message Def Add Attributes Screenshot

Select "Browse" (if a body already exists) or "new" to create a new body. An analogous

approach can be taken for the message footer definitions.

Only complex fields may be placed in the header, body, and footer section of the message. If
you only want to use a simple field, it must be wrapped in a complex field first. We will now
continue on with a few examples of how to create some simple messages and then move to

more com plex messages.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 118 of 265

tool set

& 1AUS

11.1 Report Global Pose Message Example

[f------ REPORT_GLOBAL_POSE_MESSAGE
(basic)

The reportLocalPoseMessage is used by components to gather knowledge about the system's

positions and orientation. It is composed from the following fields...
o latitudeDegrees - sent as a scaled int with range -90 to 90
e |ongitudeDegrees - sent as a scaled int with range -180 to 180
o elevationMeters - sent as a scaled int with range -10000 to 35000
e positionRmsMeters - sent as a scaled unsigned int with range 0 to 100
¢ rollRadians - sent as a scaled short with range -3.1415... to 3.1415...
e pitchRadians - sent as a scaled short with range -3.1415... to 3.1415...
¢ yawRadians - sent as a scaled short with range -3.1415... to 3.1415...
o attitudeRmsRadians - sent as a scaled short with range 0 to 3.1415...
e time - sent as a string

Note that several floating point values are represented as scaled integers. A scaled integer
maps the integer range (for example, 0 — 65535 for an unsigned short) to the real data range.
This allows for reduced message sizes during encoding, without scarifying precision. For

additional information, please consult [AS5684].

We will first create new simple fields for each of these message elements. The most appropriate
type of simple field to use is the fixed field. We choose a fixed field in this instance because we

can attach units to the elements we need to define.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 119 of 265

2 JAUS

tool set

& Mew Fixed Field T e
‘U New Fixed Field E @
Name: | latitudeDegrees |
.
Optional? O Yes @ Mo
Save And Close
Type:|ﬂnat |v|
Units:ldegree |v|

Interpretation: | |

LA0000,0.00) [ScaleRange] &

Real Lower Limit: -90.00
Real Upper Limit: 40.00

Interpretation: |

value Set [Malue 2ef] | =

Referencing Arrays: Arrays (0

Scale Range:

Referencing Records: Records (0

Figure 75: Report Global Pose Field Example Screenshot

We create a new fixed field for each of the elements and set the range according to the

referenced scale ranges for each element. We also create a variable length string for the time

that the data was recorded.

After creating all of these simple fields, we will create a record that contains all of these

elements. We must encapsulate the elements in a record because the message body must be a

single complex field.

T ——— — ——

(Lo bt Piehae -0 K
| Becond aergle Pkl _—
+ | SwrgieFiois w |[wpets v | Fand Flexss lv_ o
: 7 Ame VarlasieLengthBinag) © HitdydeDigrees [Fieeaf ind)

| tnideRmsRadian: Flrecioi | & wnghudeDegreas ¥ tosaF jeia)

|6 yawRadises T toeaF issd] [SR COMRESS bt

| & posttonRmaMetnrs [FedF isid]
© rofRadans [FedF eid)

| @ pitchRedans [Fwedfiold)

: © ptehPaucsns (F wedFstd)

| % rolRadans [F wedf isld]

|
© posttonRmoMeters FteeaF jeld)| o
| W tlavaonMaters FuedFieid]

© yawRadians FieeaFledd]
| | e RensRadiaes Fies
| © ngRideDesrses Firedisd] © FMtudeRmeRadiars FileadFion]

| @ BthudeDegrees FesaFisd] [(# $me MariaclataegthBirieg)
| » o

| Qone |

Figure 76: Report Global Pose Record List Picker Example Screenshot

JTS Users Guide, Ver 2.0 Copyright 2013 Page 120 of 265

¥ JAUS

tool set

\& [Record]. -0 x
\&¢ [Record] E O
| Name: | globalPoseRecord|
Optional? OYes @ No
Save And Close
B Simple Fields (9)
~Record Simple Fields
+
/ time [VariableLengthString] A

simple Fields. U altitudeRmsRadians [FixedField]

© yawRadians [FixedField] i
© pitchRadians [FixedField]
 rollRadians [FixedField) v

Dafarancing Haadare: # Headers (M

Figure 77: Report Global Pose Record Creation Example Screenshot

Now we can create the message with this record as its body

il Mew Body

New Body

Name:|repnnGInbalF‘nseBDdy |

71

Interpretation: | |

Complex Field: & glohalPoseRecord [Record] ‘ x

Referencing Message
Defa: # Message Defs ()

Referencing Event Event Defs (0)
Defs:

Figure 78: Report Global Pose New Body Screenshot

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 121 of 265

&1Aus

tool set

e MewMessage Def
.\@ New Message Def

Name: |rep0r‘[GIDbaIF‘DseMessag|

ID (2 byte hex):

11

This meszage dhﬂnes the attributes of 5
ReportGlobalPoseMessange

Description:

Is Command? O es @ Mo

Header: gJausAppIicationHeader[Header] ‘ b 4

Body: li] reportGlabalPoseBody [Body] | »

Footer; B0 [Footer] | o

Referencing Input Input Sets (03

Figure 79: Report Global Pose Message Def Complete Screenshot

11.2 Report Image Message Example

[]----- REPORT_IMAGE_MESSAGE
(includes variable size array pointer)

The reportimageMessage is a JAUS message that allows for the transport of a variable sized
image across the system. For this message, will we use several fixed fields to store message

information and a variable length field to store the picture. The message needs to contain the

following elements.
e CameralD: the unigque id of the camera that took the picture
e videoFormat: the type of encoding that the image has
e data: the actual pointer in which the picture is stored

o hbufferSizeBytes: the amount of bytes that the data pointer holds

JTS Users Guide, Ver 2.0 Copyright 2013 Page 122 of 265

tool set

&)Aus

We first create all the simple fields

\ /' New Bit Field _—
Name: |camera|d | [@_S_ave J
] | Cancel |
Optional? OYes @ No
[Save And Close |

Type: | unsigned byte [v]
Sub Fields: T Sub Fields (0)

Interpretation: | |

Referencing Arrays: Arrays (0}

Referencing Records: Records (0}

Figure 80: Report Image Example Fields Screenshot

We need to create the picture portion of the message. We will choose a variable length field to

do this. The variable Length Field element contains the rest of the information that needs to be

transferred in the message so we are now done defining all of the elements of our message.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 123 of 265

tool set

{, JAUS

Min Size:
Max Size:

Interpretation: l]

Referencing Arrays: Arrays (0)

Referencing Records: Records (0)

Figure 81: Report Image Variable Length Field Screenshot

-0 X
\ / New Variable Length Field N
Name: | data | @save |
_ | cancel |
Optional? OYes @ No
| Save And Close |
Field Format: | JPEG [v]

After creating all of these simple fields, we will create a record that contains all of these

elements. We must encapsulate the elements in a record because the message body must be a

single complex field.

Racord Sngle Mebde —
Septe Fioey w | hmes v (7o P
+ St dal e,
7 camerad JRF wit

| data (Ve Largt F et

€

v 09 s roLon grFend
¥ s e

| o+ toomRosont
‘\@ New Record

Names | reportmageRecond

Optionad? O Ye: ®No

& Senple Flelds ()
Facord Sargre Faih
+
¥ dsta [VariableLength¥ield)
£ camenald [BtFislo

nemrelabon

Headars M

Dataraes ina liuanass

Figure 82: Report Image Record Creation Screenshot

1))

-y
Tl

JTS Users Guide, Ver 2.0 Copyright 2013

Page 124 of 265

2 JAUS

tool set

Now we can create the message with this record as its body

reportimageBody

reportimageBody [Body]

Name: IrepommageBody |

Interpretation: I |

[T 10

Complex Field: & reportimageRecord [Record] | X

V'\?Jv 1agehMessa :,2‘ Def]

\b reportimageMessage 0x0101 [MessageDef]

Name:lrepommagehﬂessage l

ID (2 byte hex): | 0101 |

el

Sends an image with the id of the camera that took the
image

Description:

IsCommand? OYes @ No

Header: gJausApplicationHeader[Header] | X

Body: a reportimageBody [Body] I X

Footer: B0 [Footer] | =k

Referencind INpUL &y pi it et iy

Figure 83: Report Image Message Creation Example Screenshot

11.3 Report Data Link Status Message Example

The reportDatalLinkStatusMessage holds information about the status of a data link. The

elements of the message are as follows
e dataLinkld: the unique id of the data link
o datalLinkState: the state of the link. The link can be either OFF, ON or STANDBY

Since the dataLinkState can only hold one of three values, we will use a bit field with a value set
that has 3 enumerated values.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 125 of 265

tool set

FJAUS

./ MewBitField -0
\ /' New Bit Field =
2 New Sub Field 5 m
New Value Set B
T Newvalue Enum -0 x [@sm
Lv— R - Cancel
New Value Enum E mE

E leAnd ©

Enum Index: Ijl

4 Enum Constant: | JAUS_DATA_LINK_OFF |

Interpretation: |Iinkis off] L_S_aﬂ_e_{_n_d_g_oge_J

Re [=

Figure 84: Report Data Link Bit Field Creation Screenshot
We need to create two more enumerated values for this set.

\ /' New Bit Field
linkEnum [SubField]

Name: linkEnum

Bit Range: (R (0, 3 d
Interpretation: -- Expt
S

Value Set numRanges: 0 numEnums: 3 [ValueSet]

\ /' New Bit Field

Name: | dataLinkState @
=T

Optional? OYes @ No =
Save

Type: I | v|
B Sub Fields (1)
~Bit Field Sub Fields

siiEidey L =
(& linkEnurm [SubField]

Figure 85: Report Data Link Enumerated Values Creation Screenshot

JTS Users Guide, Ver 2.0 Copyright 2013 Page 126 of 265

2 JAUS

tool set

The dataLinkld can be defined as another bit field. We then need to encapsulate these simple
fields into a record which can be set as the body of our message.

\@ New Record

.])

Il 18

Name: IreponDataLinkstatusRecorI

Optional? OYes @ No
Sa
Bl Simple Fields (2)
-Record Simple Fields
g =
4 camerald [BitField]
'/ dataLinkState [BitField]

Simple Fields:

Figure 86: Report Data Link New Record Creation Screenshot

We can now create our message with this record as the message's body.

-

. @ reportDatalinkStatusMessage 0x0102 [MessageDef]

Name: reportDatalinkStatusMessage

ID (2 byte hex): 0102

-

The status ofthe data link Exp

al

Description:

Is Command? No

Header: 9 JausApplicationHeader [Header] ‘

Body: i] reportimageBody [Body] |

Footer: B [Footer]

Referencina Innut = wocoamois em

Figure 87: Report Data Link New Message Creation Screenshot

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 127 of 265

tool set

&1Aus

12 Defining Protocol Behavior

The protocol behavior of a service is defined using one or more concurrent finite state machines
as shown below. JTS provides a GUI editor for state machines. This user interface may be
opened by double clicking on an existing protocol behavior entry in the database, or by right
clicking on the Protocol Behavior icon in the main application window (or Service Def window)

and selecting “New” in the pop up menu.

It is recommended that the user read the AS-5684 section titled "Protocol Behavior". ‘

The behavior elements are listed in the palette to the left. A single printable letter size page is
provided for drawing out the state machine. The elements on the palette may be dragged and
dropped onto the page when drawing out the state machines. Section 10.1 provides brief
descriptions for each of these elements. Refer to the drawing tips in Section 10.2 and 10.4 to
learn how to draw and format each element on the page. The states that are colored red are
inherited states. Section 10.3 provides a brief description of state machine inheritance. The
menu bar at the top provides basic menu items for creating, editing and saving the protocol

behavior. The inset view at the bottom left may be used to zoom and pan across the page.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 128 of 265

JAUS

H tool set

ManagementFSM [ProtocolBehavior]

@ W Y [Hetvetica . [v]tet [v] B 2 |

Behavior Elzments 4

)

Finite State Machine

name=ManagemeangM; BRI C SR EEH

Receiving;

=]
]
Feady, ,
o MotControlled;
f/

B

StateA; [
Receive(QueryStatus msg, ReceiveRec transportDiata):dEfaurt—State-
Receive(RequestControl msg, ReceiveRec transportData);

Pseudo Start State

)

Initialized;
State 3
. [Standby;] Init; Failure;
3 Receive(SetEmergency msg, RgceiveRec transp
Default State

MErgency;

Receive(ClearEmergency msg, Recej
Failure|

E Tut E:I awn ;]
Receive(Reset msg, ReceiveReq transportData);

\ Receive(Shutdgwn msg, ReceiveRec tranﬁ ;|
[} Cantralled;
% StateE; \

I

Intarnal Transition

b

Simple Transition

L

Fush Transition

=

Fop Transition

g

Default Intérnal Transition Receive|Standby msg, ReceiveRec transportData); R?cei\re(@uerys‘tatus msg, F jvef tfansportD
f [Standby; J [Ready;
Default Simple Transition N
eceive(SetEmergency msg |ReceiveRec transportData
& Receive(Resume msg, ReceiveRec transportData);
Default Push Transition mergency;
Receive(Reguestfontrol msg, R
f Receive(Releasefontrol msg, R
A Timeout;
Default Pop Transition Receive(Respt msg, ReceiveRec tran:

\Recei\re(ClearEmergency msg, ReceiveRec transpo

559,937

Figure 88: Protocol Behavior User Interface

12.1 Behavior Elements

e Finite State Machine: The finite state machine element represents a single state
machine and is a simple container element that is used to draw one or more state

machines. The attributes of this element are name and isStateless. The isStateless

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 129 of 265

¥ JAUS

tool set

attribute must be set to true only if the service does not store data received from its

clients during the course of its execution. The syntax for specifying these attributes is,

e npame = stateMachineName; isStateless = true OR false;

example: name=management; isStateless=false;

e Pseudo Start State: A pseudo start state represents a default vertex that is the
source for a simple transition to the initial state of a set of nested states. There must
be one and only one pseudo start state per set of nested states. The transition used

to point to the initial state must be a simple transition.

e State: The state element represents a single state whose name, entry and exit
actions may be specified using the following syntax.

e name; entry [OR exit]: actionl (argl,...);...

example:

Init;
entry: initialize();
exit: beginTimer () ;

o Default State: Each state may specify at most one special nested state called the
default_state. Like other states, the default state may be the source of transitions, but
not a destination for transitions. If a state receives an event for which it has no
transition defined, the state’s sibling default state’s transitions are evaluated. If the
sibling default state specifies a transition for the event, then that transition is
executed. If the transition is a self-transition, then the state machine re-enters the
sibling state once the transition execution is complete. Entry and EXxit actions cannot

be defined for a default state.

e Internal Transition: An internal transition is always a self transition. The key
difference between an internal transition and a simple transition is that the exit and
entry actions of the source state of the internal transition are not executed when the
internal transition is invoked and completes execution. In essence, the source state is
never exited during transition execution. Parameters, guard conditions and actions
may be defined for internal transitions using the syntax below. A single internal
transition arrow may be used to represent internal transitions (separated by semi-
colons) for one or more events (or triggers). The syntax for the transition can be

brought up by invoking the transition’s tooltip (place the mouse on the transition icon

JTS Users Guide, Ver 2.0 Copyright 2013 Page 130 of 265

/ JAUS

tool set

in the Behavior Elements panel). New users may find this syntax hard to remember
but the auto-completion guide (see Section 12.2) virtually eliminates the need to

remember this syntax.

e Trigger (paramType value, ...)[guard]/ action (argl,...),...;...

example:

AccessControl.Events.Transport.Receive (RequestControl msg, Re-
ceive.Body.ReceiveRec transportData)/sendConfirmControl ('NOT AVAILABLE',
transportData) ;

AccessControl.Events.Transport.Receive (ReleaseControl msg, Re-
ceive.Body.ReceiveRec transportData)/sendRejectControl ('NOT AVAILABLE',
transportData) ;

Simple Transition: A simple transition is similar to an internal transition except that
the source and destination states of the transition do not have to be the same, and
the source state is exited when the transition is invoked. This implies that the source
and destination states’ exit and entry actions are called when the transition is invoked
and its execution is completed respectively. The syntax for specifying the transition’s
trigger, parameters, guard conditions and actions is similar to that of internal

transitions above.

Push Transition: Push transitions are used to transition from the source state to the
destination state such that the destination state is re-entered once with every
successive push and exited once with every pop transition and for the number of
times a push transition was triggered. This operation is similar to the push and pop
operations performed on a stack. The exit actions of the source state of the push
transition are not executed when the transition is invoked. But, the entry actions of the
destination state of the push transition are executed once the transition has
completed its execution. The syntax for specifying a push transition is as shown
below. A single push transition arrow may be used to represent push transitions
(separated by semi-colons) for one or more events (or triggers). A push transition
may have an additional end state defined within it. When specified, a simple transition
is executed first to this end state, immediately after which the actual push transition is
executed. The simple transition is executed only once and for the first time that the
push transition is executed. This mechanism is provided in order to alter the pop

transition behavior by specifying a different end state than the parent state of the

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 131 of 265

tool set

¥ JAUS

push transition. The syntax for the transition can be brought up by invoking the
transition’s tooltip (place the mouse on the transition icon in the Behavior Elements
panel). New users may find this syntax hard to remember but the auto-completion

guide (see Section 12.2) virtually eliminates the need to remember this syntax.

e trigger (paramType value, ...)[guard]/ action (argl,...),...{end_state};...

example:

AccessControl.Events.Transport.Receive (SetEmergency msg) / storeld(
msg) ;

e Pop Transition: The pop transition is used to transition out of a state into which the
state machine was pushed using a push transition. Pop transitions must be defined
on states that are destination states of push transitions. The exit actions of the source
state of the pop transition are executed when the transition is invoked. But, the entry
actions of the destination state of the pop transition are not executed once the
transition has completed its execution. The syntax of the pop transition is as defined
below. A single pop transition arrow may be used to represent pop transitions
(separated by semi-colons) for one or more events (or triggers). An optional
secondary simple transition may be defined within a pop transition. This transition is
executed once a pop transition has been issued for every corresponding push
transition. In the syntax below, end_transition stands for the name of a secondary
transition. If this secondary transition takes a sequence of arguments, the pop
transition must specify the values of these arguments. The values of the arguments
may be primitive constants, string constants or variable names. If the argument is a
constant, it must be encased in single quotes in order to make it distinguishable from
a variable name. If the argument contains a variable name, it must be declared in the
parent transition's parameter list. The syntax for the transition can be brought up by
invoking the transition’s tooltip (place the mouse on the transition icon in the Behavior
Elements panel). New users may find this syntax hard to remember but the auto-
completion guide (see Section 12.2) virtually eliminates the need to remember this

syntax.

e trigger(paramType value, ...)[guard]/action(argl,...),...{end_transition(argl,...};...

example: |

JTS Users Guide, Ver 2.0 Copyright 2013 Page 132 of 265

/ JAUS

tool set

AccessControl.Events.Transport.Receive (ClearEmergency msg) [isID-
Stored(msg)]/deleteID(msg);

Default Internal Transition: If a state receives an event for which it has no transition
defined, the default internal transition is executed if it is defined. Since any transition
can fall through to a default transition, the default internal transition has no trigger or
parameter list specified. Aside from this difference, a default internal transition is like
an internal transition. The syntax for the transition can be brought up by invoking the
transition’s tooltip (place the mouse on the transition icon in the Behavior Elements
panel). New users may find this syntax hard to remember but the auto-completion

guide (see Section 12.2) virtually eliminates the need to remember this syntax.
o [guard]/ action (argl,...),...;...

Default Simple Transition: If a state receives an event for which it has no transition
defined, the default simple transition is executed if it is defined. Since any transition
can fall through to a default transition, the default simple transition has no trigger or
parameter list specified. Aside from this difference, a default simple transition is like a

simple transition.

Default Push Transition: If a state receives an event for which it has no transition
defined, the default push transition is executed if it is defined. Since any transition can
fall through to a default transition, the default push transition has no trigger or
parameter list specified. Aside from this difference, a default push transition is like a
push transition. The syntax for the transition can be brought up by invoking the
transition’s tooltip (place the mouse on the transition icon in the Behavior Elements
panel). New users may find this syntax hard to remember but the auto-completion

guide (see Section 12.2) virtually eliminates the need to remember this syntax.
. [guard]/ action (argl,...),...{end_state};...

Default Pop Transition: If a state receives an event for which it has no transition
defined, the default pop transition is executed if it is defined. Since any transition can
fall through to a default transition, the default pop transition has no trigger or
parameter list specified. Aside from this difference, a default pop transition is like a

pop transition. The syntax for the transition can be brought up by invoking the

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 133 of 265

tool set

&1Aus

transition’s tooltip (place the mouse on the transition icon in the Behavior Elements
panel). New users may find this syntax hard to remember but the auto-completion

guide (see Section 12.2) virtually eliminates the need to remember this syntax.

. [guard]/action(argl,...),...{end_transition(argl,...};....

12.2 Behavior Element Definition Editing

JTS allows protocol behavior element definitions to be changed in a text editor using a
specific syntax or within a structured editor which maintains rigid constraints imposed by a
tree structure representation of the definition. When an element is opened for editing, a

panel will be displayed with the two editors along with an Accept and Cancel buttons.

Ready; I Svuctursd Eanar | Text Eator |

Internst Transitions
1 Aod

()

| Delate

| Cancel | | Accept

Pressing the accept button while focused on either the structured editor or the text editor
will call validation methods before saving the definitions stored in the currently viewable
editor. All definitions in the non-selected editor will be discarded after pressing the accept

button. Pressing the cancel button will discard any changes made in both of the editors.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 134 of 265

tool set

’, JAUS

| structured Editor | TextEditor |

Ready;

-
Message £

@ Validation error: Lexical error atline 1, column 1. Encountered: *I" (33), after: ™

To edit a value in the structured editor, highlight the item using the keyboard arrows or
mouse and press F2. The tree item will then turn into a text field allowing the definition to
be typed. To set the edited value in the tree, press enter. Note that setting the value in
the tree does not yet save the definition beyond the scope of the structured editor.

Ready; ™ | structured Edgitor | Text Editor

Internal Transitions

) ¥ [modifyNamel

» Guards
» Parameters
» Actions

[Add

J

Delete

Cancel Accept

Within the structured editor, simplistic validation of field values is done before the field can
be set. For example, a trigger name must be a valid C identifier so if pressing enter while
editing a field with an invalid identifier, a popup will display the validation error for the

current editing field. To cancel editing of a tree item, press the escape button.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 135 of 265

tool set

¢ JAUS

| structured Editor | Text Editor |

Internal Transitions

ok

Message

6 Validation error: Invalid C Name

The structured editor also contains a delete button so that items from the tree can be
deleted from the definition. Only tree items that can be removed from the tree are deleted
when the delete button is pressed. To remove from the tree, select the item by navigating
with the cursor or keyboard. When the desired item is highlighted use either the keyboard
delete button or the button within the window to remove the highlight item from the tree.
There is no undo feature but the cancel button will allow you to back out of editing without

saving the definition so that it can be reopened in the event of any mistake.

Within the structured editor, some items of the tree contain an Add button. When this tree
item is clicked with the cursor, or enter is pressed when highlighted, a new tree item is
added corresponding to the list at the level of the Add button. This is how multiple

triggers, actions, parameters etc are able to be added within the structured editor.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 136 of 265

2 JAUS

tool set

| svuauree Estor | Test Eaw |

‘ Imternal Transitions
B » ransport Recsve

—
oady; > ranapoit Recsive
- . vapart Recene
2] e
""""""" » lansport Receive
» transport Recene

» Iranspoit Recshe
» ranspoit Recsive

* lranspoit Receive
» EvertOccurred
» EveniEmor

Adg

Detete |

Cancel | Accept |

The structured editor and text editor may be moved within the page by dragging with the

cursor. It may also be resized by dragging the corners of the window.

12.3 Auto-completion Guide

The Auto-completion Guide was designed to encourage reuse of previously defined definitions
while designing new protocol behavior definitions. It will search through all service definitions
linked to a protocol behavior and make appropriate suggestions about what can be included in a

trigger definition while it is being edited.

To access the Auto-completion tool within the structured or text editor, simply press the Ctrl
button once while editing a definition To turn off suggestions, press the Ctrl key again or the Esc
key. The drop down will disappear after a selection is madebut will pop up again whenever the

text area is refreshed by moving the position of the caret.

Figure 89: Auto-Complete Example after typing ‘ev

Adrop down with the title of the section of the trigger being edited will appear followed by
suggestions about what to add next. No validation of the edited trigger occurs until after the
trigger is accepted so the Auto-completion will only suggest based on the information available

and may make incorrect/invalid suggestions based on current information. The suggestions are

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 137 of 265

tool set

¢ JAUS

case sensitive so typing 'EV' instead of'ev' in the above example will yield no matching

suggestions in the drop down.

Structured Editor | Text Editor
Ey

m

Cancel Accept

Figure 90: Case-Sensitive Auto-Completion

The Auto-completion tool will dynamically update suggestions based on what is typed while
editing a trigger. To use one of the suggested items in the drop down, select the item with the
cursor or use the up/down arrow and enter key when the desired item is highlighted.

Figure 91: Selection of Auto-Completion Suggestion

The five possible sections are Transition, Parameter, Argument, Guard and Action. The
Argument type is included when editing both the Guard type and the Action type. Each of the
items will show up after the appropriate separation character is added to the trigger definition.

Figure 92: Auto-Completion of a Guard Condition

The Auto-completion tool supports inline editing of text definitions which can be trigger by
moving the caret to whichever portion of the trigger needs to be edited. Suggestions will be
made based on a best guess depending on the information available and a replacement made

for the estimated portion of the trigger being edited. Again, validation is only done after the

viernal Tranzihions la

¥ events CreateEvent
v Guards

Ready;)
U_maw] Teat Editor |

JTS Users Guide, Ver 2.0 = — L38 of 265
Deiete .

seemEnsts(CanceEvent msy)
sventExists(CreateEvent mag)
eveniEnsis(UpdateEvent msg)
BAMOMVakd Setiumonty msg)

+ HControlavsitable()
5C WChienyRecene Body RaceheRec ransporData)
ACurentiumnontless(RaquastControl msg)

tool set

¥ Jaus

trigger is deselected so if there is a problem with the trigger syntax, guesses may be made

within the Auto-completion which may have undesirable consequences.

Structured Editor | Text Editor |

ntrol.events.EventError(){isControlAvailable:

Cancel @ |

|

isControlAvailabie()

isControllingClient{Receive Body.ReceiveRec transportData)
isCurrentAuthorityLess(RequestControl ms

ER et Al ty! (Req 9)

Figure 93: Resolving a Guard Condition

New lines and tabs are supported. The Auto-completion drop down will follow the position of the

caret in the textbox so as you type, the drop down position will continually change with each

change in the position of the caret.

1

|| cancelEvent V.
|| createEvent) L .

£ Cancel Accept
a—

‘lear} LveRec) ;

B keepiBac) ;

s e)i

Structured Editor | Text Editor

—|laccessControl.events transport. Receive(Gueryste‘
accessControl.events Event(CreateEvent msg)/

||

——

Figure 94: Auto-Completion of an Action

JTS User’s Guide, Ver 2.0

Copyright 2013

Page 139 of 265

2 JAUS

tool set

Transition names are based on message and internal event names. If inheritance is used in the
service definition, the messages will be nhamespaced by using their immediate parent name in
the Auto-completion drop down. After the message name is chosen, Auto-completion will fill in

the entire namespaced message name into the trigger text area.

| Structured Editor | Text Editor |

[Structured Editor | Text Editor |
Internal Transitions Internal Transitions
= events.EventError

Messages E| Add
events.CreateEvent -
events Event

Delete
events. EventError ;J
& events EventOccurred e Cancel Accept
events. QueryEvents —
g% events RejectEventRequest

~ Figure 95: Auto-Completion Results

12.4 Drawing Tips

e Page Size Constraint: A single page has been provided for a reason. The constraint
has been imposed to discourage the user from making the protocol behavior too
complex. If complex behavior needs to be specified, it may be better to break up the
behavior into sub-behaviors using inheritance, or by identifying orthogonal concerns
in the complex behavior and separating these concerns into two or more interacting

services.

e Graph Movement: The entire editing space can be moved by holding down the
center mouse scroll wheel, Scrolling with the scroll wheel zooms in and out within the

editing window.

e Tooltips: Since the syntax required to define state machines, states and transitions is
hard to remember, tooltips have been provided to show the syntax. To view the
syntax, place the mouse cursor over a behavior element in the palette or on the page

for two seconds, and the tooltip will appear as shown in the figures below.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 140 of 265

"C» JAUS

tool set

-

Default State

I

Internal Transition

Recei

|Usage triggeriparamType value, _)[guard]factionarg1,.)... .

b—!

SimpIeITransition

I

Push Transition

° _a

Receive(SetEmergency msg, RgceiveRec transportData);
ure;]

MErgency;

Receive(ClearEmergency msy, ReceiveRec transportData);

| Usage: name; entry(OR exityaction1(arg1,), .

Figure 96: Tooltips

¢ Moving and resizing: The page view contains control features that allow the user to
move and resize behavior objects on the page. To move a behavior object, place the
mouse cursor on the object until a green outline forms around the object as shown in
the figure below. Holding down the left or right mouse button will allow the objects
location to move. Holding down the Ctrl button while moving the object will create a
copy. Holding down the Alt button while dragging from a State, Default State or
Pseudo Start State will create a simple transition to the state in which the mouse
pointer is located when the mouse button is released. Internal Transitions can be

created using the same routine by releasing the mouse button in the source state.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 141 of 265

tool set

&1aus
o

Recetve{QueryStatus msg, Recelvel
Receive(RequestControl msg, Receiv

Initialized,

%B%BT nit;

E

Figure 97: Moving and Resizing Protocol Objects

e One or more behavior objects may be resized by selecting them with a mouse
click or by stretching a rubber band around them. When this is done, green control
boxes appear around the edges of the behavior objects. The objects can be resized

by performing a mouse drag operation on one of these control boxes.

e For transition arrows, notice that the control box at the end of the transition turns

blue when that end of the transition is connected to a state.

e The label of the transition may be moved by performing a mouse drag operation

on the tiny yellow control box next to the transition label.

Initiadzed; ,
0

Figure 98: Moving Protocol Object Labels

e Undo/Redo: The user may undo or redo one or more operations by selecting the
undo and redo buttons (shown in figure below) on the menu bar or by typing CTRL+Z
or CTRL+Y.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 142 of 265

tool set

i JAUS

{ PO, > !

itFSM [ProtocolBehavior]

Figure 99: Protocol Editor Undo Icon

e Abbreviated Transition Labels: Since the signature of a transition can be rather
long, the transition labels appear abbreviated when they are not being edited. When
the user double clicks on a transition, the entire transition label appears in an editable
text box as shown in the figures below. The abbreviated view only shows the

transition trigger and parameter list without namespaces.

Receive(QuaryStatus msg, RecelveRec transportDats Fratlt_state™
Receive(RequestControl msg, ReceiveRec transpdrtData);

Initialized;

[Standby;) [Thit;]

Failure;

PlhraivaRar tr

P LTV
ircessContol Everte Tramsg ot Receise| Dueny5ian miag Aece e Sadr ReceneRat tansporDiats Jesm oS epoctitatuy| tynsporDaty |
At e35CEN0TE ENIEs TOIrmS it RaCoim | Redaaa-enil meg Recuns S0 RacomsRion rameotDot | IsStatzSunaselinim eSanfrmC oo NI T_AWIARLE TanspatDaal]

Figure 100: Protocol Trigger Abbreviated and Expanded Transition Labels

e State Machine and State Nesting: When drawing nested behavior objects?, the user
must first enter the parent shape by right clicking on the shape and then selecting
“Shape” => “Enter Group” in the popup menu as shown in the figure below. Once the
user has drawn the nested behavior objects, the user may exit the parent shape by

selecting “Shape”=> “Exit Group” or “Shape” => “Home”. This operation is necessary

% For example, when drawing states and transitions within a finite state machine object, or drawing
nested states and transitions within a parent state object.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 143 of 265

tool set

LORTIR
~

to ensure proper nesting of sub-behaviors. (Also see keyboard shortcuts in the last

sub-section of this section)

StateA; -
Receive(QueryStatus msg, ReceiveRec transpnrtl:fata);
Receive(RequestControl msg, ReceiveRec transponData);

efaull_state,” ™

itData);

“* Home
4F Exit group
L Enter group

1] Group
"1 Ungroup

portData);

Remaove from group

T :ﬂ: Collapse
Copy 5. Expand
& Paste T, Ta Back
Dalata | ©h ToFront

Align

Delete

Farmat
Shape Autosize

Edit
SelectVerices
Select Edges
Select All

Figure 101: Entering a State Group

12.5 State Machine Inheritance

When the user specifies that a service definition inherits-from another service definition, a shell
of the protocol behavior containing the base behavior states is automatically created for the
user. This shell may be viewed by selecting a new protocol behavior after setting the inheritance

relationship as shown in the figure below.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 144 of 265

tool set

$JAUS

\ NewSenice Def SREm

\\- New Service Def B @
-~

Name: |dendedLocalPoseSensor i1

ID: [n3us jss:mobiltyExtendsdLocalPossSansor

An enhanced local pose sensor

Description:

Assumptions:

Inherits From: % LocalPoseSensorv!.0 [ServiceDedf] | x

Client Of: Service Defs (0)

constant Set: [[ConstantSef | o
inputset: (@ pnputset) | &
output et B [OutputSet] | ok |]

Event Defs: Event Defs (0)

Protocol Behavior: [l [Frotocol Eehavior] | L

Base Senice Ta: Service Defs (0) Mew
Browse
Find

<]

I oo Diofe (0

‘ Created On: 01/08/201012:1

Figure 102: Defining Inheritance

The shell protocol behavior opens in a new protocol behavior editing window as seen in the
figure below. The red states imply read-only base behavior states. The layout and format of the
states in the protocol behavior shell is as defined by the base service definition. While the labels
are read-only, the states themselves may be moved or resized. This shell is a copy of the base
behavior state machine. Modifying its layout does not affect the protocol behavior layout of the
base service definition. The user can now extend this state machine by adding nested states
and transition to the base states.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 145 of 265

5: JAUS

tool set

¥
Fecelving,

¥
Ready;
FotControlled,

o defaul_stEE T detaiit”stae,

Controfled,

;7 detadl _state] T

Figure 103: Inherited States as Red Read-Only States

12.6 Redoing the Layout of Imported Protocol Behavior

Since JSIDLv1.0 does not specify layout information for state machines, protocol behavior that is
imported from JSIDL compliant XML will need to be formatted for readability and clarity. JTS
performs minimal formatting to help the user reformat the state machines. The figure below
illustrates an imported copy of the Management Service protocol behavior®. JTS provides the
simple step layout (highlighted in blue) where each step shows a level of nesting. Each column

represents a set of sibling states. The parent state of the set is a step above and to the left of the

3 Taken from AS5710 v1.0

JTS Users Guide, Ver 2.0 Copyright 2013 Page 146 of 265

&AUS
H

tool set

column. For example, the sibling states NotControlled and Controlled are the nested states of
Ready. When the set of sibling states contains a default state, the default state is drawn as the
first state in the column and is placed adjacent to the parent state. The default states are marked

with big blue check marks.

= ﬁlault_st'[te

Eil;

t:_e‘]
FRRY

Receive(Juerydtatus, Req

ate

\'/, E Receive|Query3tatus, H

tandby;

Receive(ClearEmergeficy, RedeiveRec)

Failpre(]);

[

Fhilge() JREceive(Reset | B
[

Receive(flearEmergefcy, RedeiveRec); 9T

Entry: e | 1 Receiwt{fetEmerge

Receiwve{Bhutdown, |Rece iveRec) ; Feceive | SetEmergency,

Beceive (Resume[, ReceiwveRec);

Receivel3tandly, Reced

Receive (ReqiestContr)
Beceiwve{ReldaseContr

Fecejve(Seth

T imne ot

Failure|

E—Rﬂ:aivelﬁh

Eeceive(R

Feceive (]

Figure 104: Default Layout After Service Import

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 147 of 265

tool set

$JAUS

Although this layout separates out the states and makes the inheritance hierarchy visible to the
user, reformatting the state machine is still a fairly difficult task. A few tips are provided below to
help make it easier for the user to reformat the state machine starting with this layout. (Also see

keyboard shortcuts in the last sub-section of this section)

Since this process is not easy, it is recommended that the user save the formatted protocol behav-
ior frequently. Should the layout get messy, the protocol behavior view simply needs to be reo-
pened to get back to the last saved version.

e Formatting Nested Behavior Objects

1. Begin reformatting from the super state and move down each nested chain iteratively as
described by steps 3-6 below. (Also see keyboard shortcuts in the last sub-section of
this section)

2. First, enter the parent shape of the shape that needs to be formatted®. When starting

from the top, the user must first enter the state machine object.

3. Next, collapse the nested states of the state being reformatted as shown in the figure
below. In this case, it is the state called Receiving that is being reformatted. Collapse the

nested states by clicking on the little white box on the top left corner of the state.

Fxcewing)

Eg ollapse/Expand

I8 il oltro A

Figure 105: Collapsing and Expanding States

4. Once the parent shape has been entered (the state machine object in this case), the top
left corner of the page coincides with the top left corner of the parent shape. So, in order
to maximize the space utilization within the parent object, move the objects being
reformatted to the top right corner of the page.

* See Section 10.2 on Drawing tips to learn how to enter and exit shapes.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 148 of 265

tool set

& JAUS

Figure 106: Moving States into Parent States

5. Perform steps 3-5 recursively until the deepest level of nested states in each chain of

nesting has been reached.

6. Once the deepest level of nesting has been reached, format the behavior objects at this
level in a manner that minimizes intersections. The figures below show the before and
after views for the formatting performed on StateA’s nested state set. Refer to the next
sub-section on Formatting Transitions to learn how the layout of crowded transitions can

be reformatted.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 149 of 265

tool set

¥ jAus
‘a

bfault_state

s
]

ReceiwvelJueryitatus, RecpiweRec);
Standby;
- Failure();
S ol
i Inif; Beceive|JetEmergency, ReceiveRec);
polnitialize()
Faildre;
shutdown
Receive(Setduthorityl;
Ed EEI]—CY Timeouti);
Failurei);
J FeceiwveiShutdewn);
Receiwve(Reset)
Receive (RequestContrel ; ReceiveRec);
defaulf_sfate;
H |
: Recoiv(CusryStatus msg, RecenveRec ransportData),
_ R
Eailre

{

‘lmnw:e-: 'F"dum:' Recaive| SstEmergency msg. ReceveRec transportDataj;
andby; \]
Recerva(RequastControl msg)
Recave(Resat msgl;
‘Emergency. Receive{Shsdown msg)
Failre,

3 Recaive{SetAuthanty msg)
[accessControl Timeout

h—)

Recoivo|ClearEmergency msg. RaceleRec transponData)

Figure 107: Before and After Reorganizing States

7. Once all the deepest level nested states have been formatted, the user will need to exit
out of all the shapes and then finalize the layout of the state machine by making slight
adjustments to the shapes, sizes and locations of the behavior objects in order to ensure
that the state machine fits on the page. The final layout for the Management state
machine is shown below. It is recommended that the user enter a behavior object before

JTS Users Guide, Ver 2.0 Copyright 2013 Page 150 of 265

¥ JAUS

tool set

moving two or more of its nested behavior objects around. Alternately, the user may
collapse the behavior object before moving the object and its nested objects
simultaneously. This prevents behavior objects from entering (or snapping to) other
objects to which they share no parent-child relationship.

~
i
i
Thih

AL o e [V

h]
o Recewing;

3
o Feady;
h 2
;(FotControlled, \
V StateA, \ fasfatistats

nit;
entry: initialize|);

Jdefaul_stafe;)

3

=0, RegeiveRec transportData);

Recdive(QueryStatus

Initialized,; Failure;

MErgency;

tandhby; Failure; hutdown Receive(SetEmergency msg, RecelveRec transportData);
ive(RequestControl msgq);
J

] Receive(Reset msq);
Shutdown msg);

-— ceive(SetAuthority msg
Recgive(ClearEmengency msy, ReceiveRec transportData); accessControl Timeout,
Failure;
= i)S‘\.. ek g_Ir-\ - + £ iapey -
Controfled; Failure;
Receive(Resel msg, ReceiveRec ransportDatay,
StateE;
iveRec transportData);
idefauli_state

Receive(QueryStatus msg, ReceeRestikanspe

‘|: Receive(SetEmergen

Receive(Standby msg, ReceiveRec transportData); Receive(RequestTontrpl msg);
Receive(Resdt mgq);
Receive(Shutdofwn msg);
geeive(SetALthprity]

\\\\ Receive(ClearEmerpency msg, ReceiveRec transportData);

Figure 108: Fully Re-Organized State Machine

ive(Resume msg, R

Datq);

seiveRec transpoftData);

12.7 Keyboard Shortcuts

The following keyboard shortcuts may be used in the protocol behavior Ul.

Agl"control S":"save"
JTS User’s Guide, Ver 2.0 Copyright 2013 Page 151 of 265

¥ JAUS

tool set

"control shift S":"saveAs"
"control N":"new"

"control O":"open"
"control Z":"undo"
"control Y":"redo"
"control shift V": selectVertices
"control shift E":"selectEdges"
"F2":"edit"

"DELETE" :"delete"
"UP":"selectParent"

"DOWN" :"selectChild"
"RIGHT":"selectNext"
"LEFT":"selectPrevious"
"PAGE DOWN":"enterGroup"
"PAGE UP":"exitGroup"
"HOME" : "home"
"ENTER" : "expand"

"BACK SPACE":"collapse"
"control A":"selectAll"
"control D":"selectNone"
"control X":"cut"

"control C":"copy"
"COPY":"copy"

"control V":"paste"
"control G":"group"

"control U":"ungroup"

JTS Users Guide, Ver 2.0 Copyright 2013 Page 152 of 265

tool set

&)Aus

"control ADD":"zoomIn"

"control SUBTRACT":"zoomOut"

- "DELETE" :"delete"

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 153 of 265

tool set

¥ JAUS

13 Other Examples

Several other examples have been created to demonstrate additional capabilities of JTS or to
address specific common implementation issues. These are not meant to be complete
implementations, but rather they are designed to give enough detail to allow the developer to
create their own implementation. Many of these example services inherit from the JSS core
services. These definitions are located in the <JTS GUI dir>/resources/xml directory. Some
core services may need to be imported before building up the component definitions within JTS
for the following examples. Also included in the noted directory are various other published JSS

services such as the mobility, manipulator and environmental sensing services.

13.1 Waypoint Driver Example

The Waypoint Driver example is based on several mobility services integrated into a single
component to demonstrate waypoint following of a simulated vehicle. The simulator itself is very
primitive, as the goal is not to demonstrate vehicle behavior but rather to show how multiple
complex components can be integrated in a distributed system using published SAE JAUS

services generated by JTS.

The Waypoint Driver component contains several critical services:

o Discovery: The Discovery Service provides a run-time directory of known services. At
start-up, each service may register with Discovery to advertise its availability. When a
client needs to make use of one or more of these services, it can query the Discovery
Service for the JAUS ID of an available host. This component is based on the service
published in SAE AS-5710.

e Vehicle Simulator: The Vehicle Simulator is a JTS-specific service that is not published
by SAE JAUS. It provides basic vehicle simulation capabilities by updating the vehicle
position based on wrench effort commands. The JSIDL representation for this Service is
available in JAUSToolset/examples/xml/SkidSteerVehicleSim.xml.

e Pose Sensor: The Pose SensorService gets the vehicle position from the Vehicle Simu-
lator and makes it available in a JAUS compliant service. This component is based on
the Local Pose Sensor Service published in SAE AS-6009.

e Waypoint Driver: The Waypoint Driver component gets a list of waypoint command from
the OCU and implements a primitive waypoint tracking scheme. The algorithm gener-
ates primitive wrench effort commands to the Vehicle Simulator based on the position
currently reported by the Pose Sensor Component. This component is based on the Lo-
cal Waypoint List Driver Service published in SAE AS-6009.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 154 of 265

/ JAUS

tool set

In addition to the Waypoint Driver Component, JTS includes a Java-based Example OCU.
Based on the user’s input, the OCU sends a list of waypoint commands to the Waypoint Driver
and monitors the current (active) waypoint and displays the vehicle position on a simple 2D
map. Once running, the slider bar can be used to alter the vehicle speed. This componentis a
JTS-specific service that is not published by SAE JAUS.

Since each service in the Waypoint Driver Component is generated as a separate library, we
also need a mechanism for sharing data between the service implementations. For example,
when the Skid Steer Vehicle Simulator updatesthe vehicle position, it needs to make that
information available to the LocalPoseSensor service. This is achieved by a global SharedData
object that isavailable to the state machines of each service in the component. Other data
sharing data techniques are possible, such as a shared memory map or data file; this technique
was selected only for its simplicity. However, since shared libraries (DLLsS) on Microsoft
Windows systems do not have a common memory space, the build system was modified to use
static libraries rather than shared. This is achieved simple by changing the build line from

“env.SharedLibrary(...)” to “env.Library(...)” in the Sconstruct file for each service.

Running the waypoint driver is simply a matter of building theWaypoint Driver and ExampleOCU
components using the ‘scons’ build script, and running each resultant executable from the ‘bin’
directory. Since the two components are expected to communicate with each other, the Node
Manager must be started prior to these Components, similar to the Addition Client/Server

example.

13.2 Environmental Sensing Example

This example is found in the examples\StilllmageServer_200 directory. It is intended to
demonstrate how a camera can be used to allow the sending and receiving of still image data.
However, in order to be agnostic of any underlying hardware, and for the purposes of
demonstration only, the images are sourced from a set of JPEG files rather than live-video.
These files are available in JAUSToolset/examples/StilllmageServer_200/video and are required

for correct operation of the example.

A simple Java-based Stil Image Client has also been provided in

JAUSToolset/examples/Java/StilllmageClientComponent_220. This client simply queries a

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 155 of 265

2 JAUS

tool set

new image after the previous one is received, and displays the image in a small window. The
JSIDL representation for the client is available in

JAUSToolset/examples/xml/StilllmageClient.xml.

Running the Environmental Sensing Server is simply a matter of building the components using
the ‘scons’ build script, and running the executables from the ‘bin’ directory. Since the two
components are expected to communicate with each other, the Node Manager must be started

prior to these Components, similar to the Addition Client/Server example.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 156 of 265

tool set

&AUS
H

14 Search

The JTS user interface provides simple, yet powerful search capability that makes it very easy
for the user to search the database for any JSIDL type. The various ways in which the user can

perform a search are described below.

14.1 The Find Command

The Find command may be used to set up queries on any JSIDL type. The queries may be
composed of multiple simple criteria in conjunction. To access all the types, select

Types=>Types=>Browse from the Menu Bar.

{ Componants
=] Setvice Sels
Sanice Defs
Col Messags Defs
Complex Frsdds
Smple Fiskds
Se| Protocol Behawors

Types @9
E &

Dimensions Simple Flekls Footers

VVVVVVVYVVYYWwY

Usars
4 B &
Se L0g Vartable Vake Sels Fiead Fiesds
Tives Format Feids
Meossage Dets Sman Lis) ‘ ‘ ‘
i Msnage Rasinchons BiLFlelgs Value Ranges Oulput Sets
Open
Comgplex Fielos ‘ ‘
‘ Hesoars Bit Ranges
Simpis Figles
\ A
Piolotod Tme;:\lz .Jnns Input 8215 Constant Sets
Bahaiorns
19 ¢ 19
Vanabie Irnerts Froms Fiead Length
Length Fasids Ewings
Variable Baguences Evert Defe
Length Strngs
Message Defs Seale Ranges
4 agmin
2

Figure 109: Find Command Screenshot

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 157 of 265

tool set

i JAUS

Often times, it may be necessary to find types that reference other types. For instance, let's
suppose the user wishes to delete (or modify) a fixed field called RequestID. In order to perform
such a change, the user will need to know if other types reference (or depend on the definition
of) RequestID. This information can be found by first getting the set of types that can reference a

fixed field. The “Referencing Elements” label gives this set (See figure below).

| RequestID [FixedField] B @

Name: RequestiD m
28 Delete @ |

| ExportToJSON |
Type: unsigned b
ype: unsigned byte | @ Refresh |

Optional? No

Units: one

Interpretation: Local request ID for use in confirm event

Scale Range: leRar A 4

Value Set. W [Value Sef] |

Referencing
Elements:

{Records, Arrays}

Created On: 05/04/2010 07:25

Figure 110: Referencing Elements Search Screenshot

Next, search the set of types for references to RequestID. To find all Records that reference
RequestID, create a query on the Record type by right clicking on the Record type and selecting
Find. The query is then set up as shown in the figure below. Note that this query can be further
constrained by adding more conjunctive queries using the green “+” button. Also note that the
query itself can be saved to the database for future use. Saved queries may be accessed

through the Query type. And yes, Queries may be performed on stored queries!

JTS Users Guide, Ver 2.0 Copyright 2013 Page 158 of 265

&aus
~

tool set

% Find Records

[Record simple Fields = |[contains |v| 4 Requesto FiecFiei] | X) €D

| savequery | [Fnd | | cancel |

08 & D

CreateEventRec [Record]
A% UpdateEventRec [Record]
& CancelEventRec [Record]
&. ConfirmEventRequesiRec [Recaord]
.ﬁ. RejectEventRequestiRec [Record]

Figure 111: Find Records Screenshot

14.2 Quick Search

Some associations between entities are displayed as buttons on the GUI. When the entity is in
the edit mode, a quick search feature may be activated on these to-one associations by clicking
once on the button. A single click brings up an auto-completion guide that filters existing
database entries for that associated type as the user types the starting characters of the name of
the association. The quick search can also be activated by tabbing through the internal frame’s
widgets (pressing the tab key to navigate through the widgets). The figure below shows an
example of the quick search guide for the Inherits From association in a Service Definition

internal frame.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 159 of 265

¥ JAUS

tool set

.! Events v1.0 [ServiceDef]
‘ Nane: |Evams

W [urmjaws Jes cors Events |
Verssom |10 | - Save And Close |

TNiS SSVCS 15 S0 10 558 Up Svant notAcatons. Sincs his
semice does nol conkain any messages and data cn which
SVEne Can e Satup 1S wsanil anly whan dsened Dy ot
sonicas hat comain messages and data on which evants
N bé gafinsd

Assumptions: [l‘lll‘:dl may ba delayed, losti ar reardared

1 |
fherts Froem S, | TIansp v | X
|

e 0f 3 SN Tramsecd v 3 [SenesDeg
rout S5t € Ev
i
wiout Set By x
3
SwmDets = =2

Frotocel Sehawer. [Ev Transport. Sendf SN Protaco J x

Conssant ot [Konstant Seq ; -

™ o 5
[SandeaDate (chenlOn banteFion), Senics Sets|

n 95072010 DR 41

Figure 112: Quick Search with Auto-Completion Guide

14.3 Smart Lists

Smart Lists provide the ability to save a query performed using the Find command to the
database.

14.4 Filtered Listings

All list views are decorated with a simple query panel through which the lists may be filtered
based on several search criteria that apply to the type of the list. For instance, the user may filter
the list of message definitions to all messages that start with “Report” as shown in the figure
below.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 160 of 265

tool set

&AUS
~

BN SIS e

| l Message Defs (6)

[Message DefName w Hstanswith Ivl IReport

I @ ReportEvents 0x41F0 [MessageDef]
@ ReportControl 0x400D [MessageDef]
@ ReportAuthority 0x4001 [MessageDef]
6 ReporiTimeout 0x4003 [MessageDef]
‘ @ ReportStatus 0x4002 [MessageDef]
@ ReportHeartbeatPulse 0x4202 [MessageDef]

Figure 113: Filtered Views

For lists that are polymorphic, as is the case for Simple Field and Complex Field lists, the query

panel provides polymorphic query options as shown below.
e T ——
q Variants (1)

| [ComplexFields + |[ypeis [~ [variants

‘ A QueryEventsVar [Variani]

Figure 114: Polymorphic Query Options

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 161 of 265

tool set

&aus
-

15 JSIDL Input / Output

XML Service Definitions written in JSIDL [5684] may be imported into the GUI by right clicking

on the ServiceDef icon on the class list as shown below.

-
=
Components
Vo

Serice Sets

1@, Browse

Smart List

Manage Restrictions
Open

Import From JsiDL

Simple Fields

Figure 115: Importing a JSIDL Service Definition Written in XML

In the dialog that appears (Figure 116), enter the path to either a single JSIDL XML file, or a
directory containing one or more JSIDL XML files. The Browse button allows a file or directory
path to be selected via a browse dialog. The Default button will restore the last path used to
perform an import or a default starting path if no imports have already been performed during the

current JTS session.

Import JSIDL x|

Select a JSIDL XML file ar directary containing JSIDL xMLs files, then click Import.

|C:Iadditinn_senrice_defs\l | [Browse | [Default |

[mpot || cancel |

[

Figure 116: Import Dialog

JTS Users Guide, Ver 2.0 Copyright 2013 Page 162 of 265

¢ JAUS

tool set

If the service definition being imported references other service definitions, declared type sets or
declared constant sets, JTS will attempt to locate these referenced specifications within the
directory and sub-directories of the parent directory of the service definition being imported. If
these specifications are found, they are automatically imported. If all of the referenced
specifications are not found, the import procedure will abort with an error.

Service definitions may also be exported to XML from the database. This is done by clicking on
the “Export to JSIDL” button on the Service Definition internal frame and selecting a destination

path as shown below.

..' Management v1.0 [ServiceDef]

Namne Management

e M Jaus S5 cors Managsmant

Versiomn: 1.0 B Export To 50N

The Managemant Sariice provides 3 state machine fot f 2 Rafraan
CoOmponent lifs-cytle managemeant Lo help chems
yndarstand now the component wil react 10 Lommanads and | Expon ToJSOL
queres .

[Generats HTNLD:

Description

Asmurgtions: Mes5395 may be dalaysd, 08! of r2o10ersd
Inherns From: W [Servce Def)
ChentOr 3 Bance Dars (0)

Input Set @ Managemard_v1.0_inputSet proutSet

Output St Wk Managemset_v1 0_OupitSst [Oupansey |

Evart Dets 2 Evenl Defs (2)
ot Behavior [Managemsrt Managemant AccessControl Events Transport Racal
constant Set BB [Constant S

Hefarenc

1 [SaeviceDals (chanOT. InharitsFrom). Saevice Sets)

Elamants

Cyested On' 08 20101522

Figure 117: Exporting a Service Definition to XML

Unfortunately, the exported XML is not fully compatible with the JSIDL schema defined in
AS5684 [5684]. This is due to some additional tags that were added to the schema under the
same namespace as JSIDLv1.0. Since the differences between the schema used by JTS and
the original JSIDLv1.0 schema are only additions, removal of these additional tags is all that is
required to arrive at an equivalent JSIDLv1.0 specification. Information about the additional tags
is provided in the file JAUSToolset\GUI\resources\schema\JSIDL_Plus\jsidl_plus.rnc.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 163 of 265

& jAUS

h tool set

16 Tree View

A not so apparent but very useful feature in the JTS GUI is the tree view. Upon first use, the user
is introduced to form based internal frames for reading or updating JSIDL objects. While
convenient when working at a single level in the object hierarchy, the form based view is not
very helpful when it comes to navigating through an object’s hierarchy. JTS provides multiple
views including a tree view via view icons on the top right corner of the internal frames. One of
these views happens to be a tree view. The figure below shows the tree view for the
Management Service. The red arrow points to the view icons in the top right corner. To the right
of the tree view appears a form based view of the object that is selected in the tree view; the
EmergencyCode fixed field in this case.

S —
.f Management v1.0 [ServiceDef]

& W Management vi .0 [SemviceDeq
W [Bsevks Def
SIS D)) Optbossat? N 28 Dsiats
¢ V?’jb?f/'“:"fl_l'l..'_-f‘(?-!—;:l[lnlvu'¢‘.'l [EsporTo 60N |
5 Messae D (7) Typec unsigned shott integer —_—
3 @ Shutdown 0x0002 MessageDet & Rerwon |
7 @ Standby dIDF Me353506E Unitec:one
I @ Rasumne 00004 MessageDel It retation -

ufly Sracantmonidptoa pris) K
SculaRange [_A——:m
$ 1

& @ AppHuader [Header) vilue G5t W EmergancyCodeSs [ValusSal |
& Body [Boay Relotencoy S 2 .
2 & SelEmergencyRec [Record] Elameny TECOITS Arays}

Natwe: EmnarganeyCods

i # Footer Fo
7 @ ClesrEmeangency 060007 Mes539s0e4
3 © CueryStatys (2002 MassageDef
3 B Nanagemant v 0_Oulpus3st Iouputset
5 Nessage Defx (1)
il @ Reponitatus 0002 MessapaDal
Event Dats (2)
= W ritizezed [EventDe
" W Faturs [EveniDef
L Nanagement Managarmant AtcessControl Everns Tran
B (Constant Sef)

Ot 051620101522

Figure 118: Tree View in a JTS Internal Frame

JTS Users Guide, Ver 2.0 Copyright 2013 Page 164 of 265

(,QJA

US

tool set

17

Software Framework

Note: Unless otherwise noted, the service definition files you will need for this section are located
in: examples/ExampleOCU_200.
Note: All examples in this section are in C++; however, the code is nearly identical to the output of

the Java and C# code. For a description of the differences between the generated lan-
guages, please refer to Section 16.2

As shown in previous examples, the JAUS Tool Set is capable of generating C++, Java, and C#
source code that implements the service definitions for each component.
discuss key aspects of working with the generated code such as adding behaviour, sending and

receiving messages, and configuring the run-time environment.

Throughout this section, a simple Operator Control Unit will be used as an example. The OCU
is a primitive example that makes use of transitions, guards, and actions to achieve the protocol
required to interact with an SAE JAUS Local Waypoint List Driver.

Waypoint Driver is convenient, but not required for this example. The protocol for this example

is given in the following diagram and subsequent state transition tables.

Figure 119: Protocol Behavior for Example OCU

SERVICE STATE TRANSITION TABLE

Label | Trigger Conditions Actions

A Reportldentification

B ConfirmControl I isControlAccepted

C ConfirmControl isControlAccepted

D ReportStatus I inReadyState

E ReportStatus inReadyState

F ConfirmElementRequest sendExecuteList
sendQueryActiveElement
sendQueryLocalWaypoint

G ReportActiveElement printDebug

JTS User’s Guide, Ver 2.0

Copyright 2013

Page 165 of 265

This section will

Basic knowledge of the

tool set

/ JAUS

sendQueryActiveElement

ReportLocalWaypoint saveTargetData

sendQueryActiveElement

SERVICE TRANSITION CONDITIONS

Condition Interpretation

isControlAccepted True if the ConfirmControl message
indicates control is accepted.

inReadyState True if ReportStatus message indicates the
server is in the Ready state.

SERVICE TRANSITION ACTIONS

e Action

Interpretation

sendQueryldentification

Send a Query Identification message
to the Discovery component.

sendRequestControl Send a Request Control message to
the Waypoint Driver component.
sendQueryStatus Send a Query Status message to the
Waypoint Driver Component.
sendResume Send a Resume message to the
Waypoint Driver Component.
sendWaypoints Send a list of 4 waypoints to the
Waypoint Driver Component.
sendExecuteList Send an Execute List message to the

Waypoint Driver with a speed of 10.

sendQueryActiveElement

Send a Query Active Element
message to the Waypoint Driver.

sendQueryLocalWaypoint | Send a Query Local Waypoint
message to the Waypoint Driver
component.

printDebug Print debug information to the display.

saveTargetData Save the current waypoint target

information for display in printDebug().

17.1 Topology of the Generated Code

The JTS code generator outputs C++, Java, and C# source code to the specified component

directory. A nested structure is used, such that code for the entire component occurs within the

JTS Users Guide, Ver 2.0 Copyright 2013 Page 166 of 265

/ JAUS

tool set

top-level directory while code for each defined service has its own sub-directory. In all cases,
C++ header files are stored in the ‘include’ and source files are stored in ‘src’. Header files and
the include folder are only generated for C++, all generated Java and C# code is located in the

[src directory. When code for a component is generated, there are five major elements.

e Code for Component Control: At the top level, the main.cpp/Main.java/Main.cs entry
point is created along with header and source files for a class based on the component
name. This component class handles the start-up of the component, which in turn
instantiates each defined service. In general, these files will not require user

modification (exceptions will be discussed in Section 17.9).

e Common Code for Component Infrastructure: The ‘Common’ library is used by all
generated components, and provides default implementations for transport control,
sending and receiving messages locally and remotely, and thread management. C# and
Java have their own ‘Common’ libraries that provide access to the C++ Common library

as well. These files will not require user modification.

e SCons Build Scripts: JTS uses SCons for its simplicity as a cross-platform build
environment, The C# generated code utilizes an add-on located in the /site_scons
subdirectory to compile These ‘Sconstruct’ scripts are automatically created for the
component which in turn calls the scripts for each defined service. The C# add-on is
included with JTS and does not need to be downloaded or installed by the user. These

files will not require user modification.

o Code for Message Classes: Within each service definition, header and source files are
created for internal events as well as input and output messages. These messages
include functions for getting and setting the members, along with encoding (marshalling)
and decoding (unmarshalling) functions for transmission in binary form. These files will
not require user modification. Additional explanation on accessing member variables

and functions is offered in Section 17.8.

e Code for Handling Protocol Behavior: Within each service definition, the protocol state
machine is encapsulated within several files. The JTS uses the State Machine Compiler
(SMC) which generates separate files for state management and user-defined stubs. As

a result, all users will need to modify the src/<service urn>/

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 167 of 265

tool set

¥ JAUS

<service_name>_FSM.cpp(.java/.cs) file to populate the transition actions and guards.
In some cases, the user will also modify src/<service urn>/ <service_name>Service.cpp
(.javal.cs) to define values for primitive types used as transition parameters. This will be

described extensively throughout the remainder of this section.

17.2 Inherited Services

The JAUS Toolset 2.0 release alters how inherited services are handled in generated code for
all languages. In prior releases, inherited services were ‘flattened’ into a single generated
service, and the behaviour of each inherited protocol definition was completely encapsulated by
that resultant service. While this provided some benefit in components with relatively simple
inheritance structures, it greatly restricted service re-use and prevented a component from

housing multiple child services that inherited from a common parent.

In the latest release, this ‘flattened’ approach has been replaced with a ‘separate-but-linked’
implementation in which each service in the inheritance chain is generated as a separate class.
However, because the protocol behaviour of inherited services may be impacted by the protocol
of its parent and/or children services, these separately generated services include references to
each parent. In the event that two or more child services share a common parent, then each
child receives a shared reference to a single parent service, as required by [AS5710]. This
ultimately allows a single component to house arbitrarily complex chains of inherited services,

assuming such chains comply with [AS5684].

Because each of the generated services contains its own representation of the protocol
behaviour state machine, some care is required to ensure consistency and synchronization
between inherited services with linked state machines. For example, in some cases a transition
defined by a child service may cause a transition in the parent service. In the new generated
code structure, the child service must explicitly notify the parent that such a transition is required.
These notifications are established in the automatically generated setupNotifications() function

and do not require any input from the end-user.
There are two primary improvements with this change:

e A component can now host multiple services with common inheritance chains, as per the
requirements in [AS5710]. An example of this is the Waypoint Driver component in

JAUSToolset/examples.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 168 of 265

¢ JAUS

tool set

e [tis now easier to re-use and share implementations between components. For example
the Waypoint Driver and Still Image components both inherit from Access Control.
Because Access Control is now generated as a separate service library, we can simply
copy the AccessControl_ReceiveFSM.cpp file from one component to the other and
have a common implementation. Alternatively, the build system could be updated to use

an Access Control library that is maintained separately from either component.

17.3 Differences Between Generated C++, Java, and C#

All three languages are designed to have a 1:1 mapping to the formal specifications. There

should be little difference between languages integrating user code into a service.

For a detailed description of the differences between how Java, C#, and C++ handle encoding

and decoding data, and other language specific syntax, please refer to the Developer's Guide.

17.4 Adding Protocol Behaviour: Guards and Actions

The source code generated by JTS is intended to build without user modification; however, to
achieve any meaningful functionality, the protocol behaviour ‘stubs’ need to implemented. As
previous examples have shown, these stub files are generated for each service, with names

based on the service name appended with *_FSM.cpp’, or *_FSM.java’, or *_FSM.cs'.

A function stub is created for each action and guard defined by the service’s state machine. The
name of the function is based on the name of the action or guard; however, actions are
appended with ‘Action’. Furthermore, each stub contains the arguments defined by the
transition giving the developer access to whatever information is required, such as (but not

limited to) the message that triggered the transition and information on the message sender.

The implementation of each stub is at the complete discretion of the systems designer. The only
restriction is that guards must return a Boolean true/false value, which in turn will drive the
automatically generated state machine. Any guard that returns false will not complete the

triggering transition.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 169 of 265

¥ JAUS

tool set

We now consider several examples based on our simple OCU outlined at the start of this
section. The function stubs are generated in ExampleOCU_200/src/urn_jts_example_ocu_1_0/
OCU_OcuFSM.cpp. Consider the “printDebug” action that occurs when a Report Active
Element message is received in the Running state. This function accepts one argument, namely

the triggering message, and prints debug information to the screen:

void OCU_OcuFSM: :printDebugAction (ReportActiveElement msg)
{
fprintf (stdout, "Current waypoint: $d Target: X=%.2f Y=%.2f \r",
msg.getBody () —>getActiveElementRec () —>getElementUID(),
target.getX (), target.getY()):;
fflush (stdout) ;

A guard implementation is similar, but ultimately requires the function to return a Boolean.
Consider a simple guard that checks to see if an incoming Report Status message specifies that

the client is, in fact, in the ‘Ready’ state:

bool OCU OcuFSM::inReadyState (ReportStatus msqg)

{
return (msg.getBody ()->getReportStatusRec ()->getStatus() == 1);

}

Once again the triggering message is passed as a parameter and the message data itself is

used to evaluate the guard. More details on accessing message data is given in Section 17.8.

The examples used so far have both been relatively primitive, such that the service can
completely resolve the action internally. In many cases, however, transitions are based on
incoming messages which require a response. How can we use the Software Framework to

send a message back to the requesting component?

17.5 Sending Messages

This section provides detail on sending messages to service interfaces co-located on the same
component, or remotely on different components. Similar examples are used in Section 8.
These components may reside on the same node (processor) or remote nodes when used with
a properly configured IP-network. Generally, sending a message to a different component

requires six steps:

1) Instantiate the desired message.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 170 of 265

/ JAUS

tool set

2) Populate any relevant data fields.
3) Encode the message into a byte array.
4) Instantiate a Send event and add the encoded message to it.

5) Set the destination JAUS ID of the intended recipient and the source JAUS ID of the

sending component.
6) Invoke the ‘send’ function on the JausRouter to send the wrapped message.

In this procedure, we see a transport wrapper class is used for the encoded message. The
Send event definition is contained in the ‘Common’ library, and is defined based on the
Transport Service defined by [AS5710].

For simplicity, the JTS::StateMachine class from which all generated state machines inherit
includes a default implementation for steps 3-6 above. Hence, the user need only instantiate
and populate the message, and the sendJausMessage() function can be used to encode the

message, add it to the appropriate transport wrapper, and send it using the Framework.

Consider an example from our OCU, in which the ‘sendQueryStatus’ action requires an
implementation which sends a Query Status message to the Local Waypoint List Driver. It is
assumed that the JAUS ID of the Waypoint Driver is known, and is referenced by the pointer

‘waypoint_driver’.

void OCU OcuFSM: :sendQueryStatusAction ()

{
// Send QueryStatus message to Waypoint Driver Component
QueryStatus query status msg;
sendJausMessage (query status msg, *waypoint driver);

}

In this particular case, the message itself supports no user configured data, so there is no action
to populate the relevant data fields. Furthermore, the sendJausMessage() built-in function
handles encoding and configuration of the transport wrapper before sending the data to the

specified destination.

In our final example, we consider the sendQueryldentificationAction(). In this case, we don’t
know the identifier of the destination, so we need to broadcast the message to all available
components. Here we can control the scope of the message by using wildcard characters to

represent the target subsystem, node, and component identifiers:

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 171 of 265

tool set

¥ JAUS

void OCU_OcuFSM: :sendQueryIdentificationAction ()
{
/// Broadcast query id message so we can find the
/// Discovery component
QueryIdentification query id msg;
sendJausMessage (query id msg, JausAddress (0xFFFF, OxFF, OxFF));

In the above examples, we need to communicate with external service interfaces, located either
on the same or a remote component. In the case of communicating between Finite State

Machines within the same service, however, internal events represent a simpler approach.

17.6 Sending Internal Events

In previous sections, we examined the implementation necessary to send a message to a
service located locally or remotely. In both cases, the input message was part of the service’s
vocabulary. That is, the receiving service can support the message regardless of the source. In
some cases, however, a service may respond to messages, or more accurately events, that are
strictly internally generated. These events are not part of the services external interface

(vocabulary) but rather represent triggers internal to the service such as failures, timeouts, etc.

Events are only defined for local (intra-service) signalling, and are invoked through the Internal
Event Handler interface, as shown in the following example taken from SkidSteerVehicleSim:

// After initialization, send the Initialized event to ourselves
ieHandler->invoke (new Initialized());

Note that the event instance passed to the invoke method is used to signal the receiving service,
and will be freed (de-allocated) upon receipt. Therefore, the memory used for the event must
not be deleted from the stack by the caller. The following example will create a system crash

when the calling function goes out of scope:

void MyFunction ()

{
// Never use memory allocated on the call stack for
// an event. This will cause a crash (core dump) when
// the calling function goes out of scope.
Initialized locallyAllocatedEvent;
ieHandler->invoke (&locallyAllocatedEvent); // no!
return; // bad things happen here..

JTS Users Guide, Ver 2.0 Copyright 2013 Page 172 of 265

tool set

¢ JAUS

17.7 Triggering State Transitions

Previous sections in this chapter showed how actions and guards can be implemented with user
defined code, including code that can instantiate, populate, and send messages to local or
remote destinations. In this section, we’ll focus on how those guards and actions are called by

the generated code through the use of state transitions.

JTS generated code is inherently event-driven. Communications threads wait for messages or
internal events. Once received, the framework passes the message or event to the
<service_name>Service class, where the incoming trigger is mapped to the appropriate
transition. In most cases, this mapping is created automatically by the code generator and there
is no additional user input required. However, when the function contains basic types (unsigned
byte, unsigned short, unsigned int, or unsigned long), the code generator cannot automatically
determine the value for these arguments. By default, basic types will be uninitialized and will
display a warning message at run-time. In order to pass the proper value to the function, the

user must manually edit the automatically generated code in <service_name>Service class.

For example, if a transition parameter named ‘sender’ is given with a type of ‘unsigned int’, the

following code will appear in the <service_name>Service class:

unsigned int sender;
printf ("WARNING! Using parameter 'sender' without initialization!\n");

Before executing the generated code, the uninitialized type should be replaced with the
appropriate definition and the informational print statement removed. This modification to the
generated code is only required when transition arguments use primitive types. When possible,
use messages and events in transitions, rather than primitive types, as the code generator will

automatically create all necessary source code to call these transitions effectively.

Finally, we note that a transition not permitted in a particular state will throw a
statemap: :TransitionUndefinedException. By default, the automatically generated
code will catch and ignore this exception. In some instances, users may wish to add information

or debug code to the exception handlers to help diagnose run-time issues.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 173 of 265

tool set

/ JAUS

17.8 Dealing with Message Data

The examples used so far have focused on relatively simple messages that have no or few data
fields. In this section, we examine more complex message structures, such as working with
scaled integers, presence vectors, and lists. The example code in this section is in C++;
however, all generated Java and C# code contain the same structures and same functionality as
the C++ code. As a result the syntax should be similar enough that it will be trivial to translate

the given examples into C# or Java.

The simplest data field element is a fixed field. These represent common data types such as
integers (1, 2, or 4 byte), floating point decimal values (4 or 8 byte), as well as strings (variable
or fixed length). Fixed fields are used within arrays and records, and the JAUS Tool Set
automatically creates get/set accessors for each field using the required data type. As an
example, consider the Execute List message used by the OCU example to begin waypoint
execution. This message contains two fixed fields, each within a single record which in turn is
part of the message body. To set and retrieve the data elements before sending the message,
we simply call the appropriate accessors based on the desired nesting level:

ExecutelList execute msg;

// command speed 10 m/s

execute msg.getBody () ->getExecutelListRec () ->setSpeed(10.0) ;

// start at waypoint 1

execute msg.getBody () ->getExecutelListRec () ->setElementUID (1) ;

// debug

printf (“Sending execute to start at waypoint %d with speed %g\n”,
execute msg.getBody () ->getExecutelListRec ()->getElementUID (),
execute msg.getBody () ->getExecuteListRec () ->getSpeed()) ;

Note that even though ‘Speed’ is a scaled integer in this message, the data accessors (both get
and set) make this calculation completely transparent. The data field is properly encoded as a
four-byte integer for on-the-wire transmissions, but is treated as a double precision floating point

in the calling code. To summarize, there is no user action required to manage scaled integers.

The ‘set’ method will also perform range checking on a fixed field, if a value_range is specified
for it. Consider our previous speed example, which has a permitted range of [0, 327.67]
inclusive. The ‘set’ function returns 0 (false) for all calls that exceed this range, and 1 (true) for
all calls that succeed. For failures, the internally stored value is not updated, as shown in the

following code:

JTS Users Guide, Ver 2.0 Copyright 2013 Page 174 of 265

tool set

¢ JAUS

ExecutelList execute msg;

// verify success
if (execute msg.getBody () ->getExecutelListRec () ->setSpeed(10.0) == 1)
printf (“Successfully set value!\n”);

// demonstrate failure
if (execute msg.getBody () ->getExecuteListRec () ->setSpeed(1000.0) ==

printf (“Set function returned failure. Value not changed.\n”);
// debug. This will print a speed value of 10.

printf (“Current speed setting is %g\n”
execute msg.getBody () ->getExecutelListRec () ->getSpeed() ;

For messages that support optional fields, the JTS automatically inserts a presence_vector with
a large enough size to support the number of optional fields within the record. The presence
vectors are fully compliant with JSIDL, and are encoded and decoded as part of the message.
The use of optional fields and presence vectors is completely automatic for setting data into a
message; however, the system designer must exercise caution before using an optional data
field from a received message. Consider the Report Local Pose message used by the example
Local Pose Sensor. This message reports the position of an unmanned system, but makes use
of optional fields to eliminate unneeded fields and reduce bandwidth. Setting data into the

message is straightforward:

// Create a populate the ReportLocalPose message
ReportLocalPose pose msg;

pose msg.getBody () —>getLocalPoseRec () ->setX (50.0) ;
pose msg.getBody () —>getLocalPoseRec () ->setY (-50.0) ;

Hence, setting an optional field is identical to setting a required field. On the receive side,
however, an optional field must be checked for existence before being accessed. Consider the

following case which receives the ReportLocalPose message sent above:

// Decoding the incoming message
ReportLocalPose pose msg;
pose msg.decode (cmptMsg->getData ()) ;

// Access the fields
printf ("X = %g\n, pose msg.getBody () -—>getLocalPoseRec () ->getX()) ;
// prints 50.0

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 175 of 265

/ JAUS

tool set

printf (“Y = %g\n, pose msg.getBody () —>getLocalPoseRec () ->getY ()) ;
// prints -50.0

printf (“Z = %g\n, pose msg.getBody () ->getLocalPoseRec () ->getZ());
// prints 222°?

In this snippet, the code attempts to access the position for X, Y, and Z. However, only X and Y
have been set. Since Z is an optional field and not set, the return value is undefined. To
prevent these types of errors, the generated code automatically includes an is*Valid() method
that returns a Boolean for each data element. If this function returns true, the optional field is, in
fact, present within the message and can be safely accessed. A better solution to our Report
Local Pose processing function therefore uses these functions before accessing any optional

fields:

// Decoding the incoming message
ReportLocalPose pose msg;
pose msg.decode (cmptMsg->getData ()) ;

// Access the fields, checking for existence first
if (pose msg.getBody () ->getLocalPoseRec ()->isXValid())
printf (“X= %g\n, pose msg.getBody () —>getLocalPoseRec () ->getX()) ;
// prints 50.0

if (pose msg.getBody () ->getLocalPoseRec ()->isYValid())
printf (“Y= %g\n, pose msg.getBody()->getLocalPoseRec ()->get¥());
// prints -50.0

if (pose msg.getBody () ->getLocalPoseRec ()->1szZValid())
printf (“Z= %g\n, pose msg.getBody()->getLocalPoseRec ()->getZ());
// doesn’t print

The JTS Code Generator is capable of supporting any of the complex fields, not just simple
records as used in the above example. Of these types, List is the most common and may
include records, sequences, or even other lists. Because of their wide ranging applicability, the

next examples will cover messages containing lists extensively.

Unlike arrays which are fixed dimension lists of fixed fields, a list is variable length. As a result,
the Code Generator creates the list within the message but does not initialize any members. In
Java and C#, java.util.ArrayList<T> and System.Collections.List<T> are used to provide the
variable size behaviour required. To put data into the list, we need to create the element and
then add it using the generated list accessor functions. Consider the following example, in which

a service populates a Register Services message to send to the Discovery component.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 176 of 265

¢ JAUS

tool set

// Create the register services message
RegisterServices register msg;

// Each list element is a Service Rec. Create one for each

// service to be added

// and set the name, major version, and minor version

RegisterServices: :RegisterServicesBody: :Servicelist::ServiceRec
servicel;

servicel.setMinorVersionNumber (0) ;

servicel.setMajorVersionNumber (1) ;

servicel.setURI ("urn:jaus:jss:mobility:LocalWaypointListDriver") ;

// .. and create another one for an alternative service

// being offered

RegisterServices: :RegisterServicesBody: :Servicelist::ServiceRec
service?2;

service?2.setMinorVersionNumber (0) ;

service2.setMajorVersionNumber (1) ;

service2.setURI ("urn:jaus:jss:core:Management") ;

// .. and a third for good measure.

RegisterServices: :RegisterServicesBody: :Servicelist::ServiceRec
service3;

service3.setMinorVersionNumber (0) ;

service3.setMajorVersionNumber (1) ;

service3.setURI ("urn:jaus:jss:core:Events") ;

// Now we can add each Service Rec element to our list.

// Using the addElement ()

// function, each new element is added at the end of the

// existing list.

register msg.getRegisterServicesBody () ->getServicelList ()->
addElement (servicel) ;

register msg.getRegisterServicesBody () ->getServicelList ()->
addElement (service?2) ;
register msg.getRegisterServicesBody () ->getServicelList ()->

addElement (service3) ;

// encode and send normally.
register msg.encode (buffer) ;

Several additional functions help us extract data from a |list. For example,
getNumberOfElements() returns the current list size (count), while the getElement(int index)
function will return a particular elements based on a zero-indexed array. The following code

displays a list of all services contained in our Register Services message:

for (int i=0;
i < register msg.getRegisterServicesBody () ->

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 177 of 265

tool set

¥ JAUS

getServicelist () —>getNumberOfElements () ;
i++)

// Get a pointer to the ServiceRec list element, using the
// counter 1 as our index
RegisterServices: :RegisterServicesBody: :Servicelist::ServiceRec*
service =
register msg.getRegisterServicesBody () ->
getServicelist () ->getElement (1) ;

// Once we have a record, we can pull data out using the

// standard accessors

printf (“Found service: %s version %d.%d\n”,
service->getURI () .c_str (), service->getMajorVersion,
service->getMinorVersion()) ;

Finally, we examine a more complex case that uses multiple nesting levels, as well as lists
containing sequences. In this scenario, the OCU uses a Set Element message to send a set of
waypoints to the Local Waypoint List Driver. Each waypoint is first encoded in a Set Local
Waypoint message, which in turn is added as a variable_format_field to the Set Element
message. The implementation to encode a Set Local Waypoint message is straight-forward,

and demonstrates previous lessons:

SetLocalWaypoint waypoint;
waypoint.getBody () —>getLocalWaypointRec () ->setX(100.0);
waypoint.getBody () —>getLocalWaypointRec () ->setY(-100.0);
waypoint.getBody () —>getLocalWaypointRec () ->setWaypointTolerance (2) ;
waypoint.encode (buffer) ;

This code sets a waypoint using local coordinates at (100, -100) and specifies a tolerance of 2
meters; that is, the unmanned system should get within 2 meters for the waypoint to be
considered achieved. This encoded message now becomes the data stored in the
variable_format_field of the ElementRec structure, which also includes the Element ID, the

Previous ID and the Next ID, much like the entries in a doubly-linked list.

SetElement: :Body: :SetElementSeq: :ElementList: :ElementRec element;

element.setElementUID(1); // first element in the list

element.setPreviousUID(0); // previous element is zero (not de-
fined)

element.setNextUID(2) ; // next element is the second waypoint

// To set the variable format field data, the accessor
// includes three parameters:
// 1) The field type. For this message, 0 = an

JTS Users Guide, Ver 2.0 Copyright 2013 Page 178 of 265

tool set

¢ JAUS

// encoded JAUS message

// 2) The size of the encoded message

// 3) The byte stream for the encoded message
element.getElementData () ->set (0, waypoint.getSize (), buffer);

With our newly created element, we can now add it to the element list. Note that the list itself is
stored within a sequence, and we must set the other values associated with the sequence; in
this case, we set the Request ID:

// Create the list request
SetElement set element msg;

// Access the RequestID stored in a record owned by the sequence
set element msg.getBody () ->getSetElementSeq () ->getRequestIDRec () ->
setRequestID (1) ;

// Finally, add the element created above to the list owned by the
sequence

set element msg.getBody () ->getSetElementSeq () ->

getElementList () ->addElement (element) ;

While this sample only populates a single waypoint in the list, a fully realized implementation
would simply continue to create more elements following the process above, and adding them to
the list using addElement(). The OCU_OcuFSM.cpp shows this in sendWaypointsAction()

function.

17.9 Configuring the Run-Time Environment

In previous sections, the emphasis was on adding functionality to the generated code in the form
of triggered transitions, actions, and guards. This section will describe how the Software
Framework can be configured such that running components can exchange messages either

within the same node (processor) or in a distributed environment.

Note: The Software Framework currently included with the JAUS Tool Set supports node-to-node
communication through the use of Jr Middleware. The middleware provides numerous con-
figuration options to customize UDP, TCP, and/or serial performance; however, such configu-
rations are beyond the scope of this document. For additional information, please consult
www.jrmiddleware.org.

At start-up, each component is given a 4-byte identifier, called a JAUS Identifier or JAUS

Address, which must be globally unique for all communicating components. This identifier is

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 179 of 265

/ JAUS

tool set

broken into three parts: the Subsystem ID (an unsigned short), the Node ID (an unsigned byte),
and the Component ID (an unsigned byte). For convenience, this is represented as a series of
three decimal values separated by colons, e.g. <subsystem>:<node>:<component>. Generally,
anything with the same Subsystem ID should exist on the same platform; for example, the same
robot, controller, or payload. Similarly, components with the same Node ID should exist on the
same node, e.g. processor.

The JAUS Address is specified when a component is initialized in Main class of the generated
code. By default, every component gets an address of 126:1:<component_id> where the
component_id is set by the user when defining the component in the JTS Ul. The main entry

point for our example OCU is generated as follows:

#include <iostream>
#include "ExampleOCU.h"

using namespace std;

int main (int argc, char *argvl[])

{
// Instantiate the component and start it.
ExampleOCU* cmpt = new ExampleOCU (126, 1, 200);

// Catch exit signals

signal (SIGINT, handle exit signal);
signal (SIGTERM, handle exit signal);
signal (SIGABRT, handle exit signal)

’

// Start the component and the services
cmpt->startComponent () ;

// Wait until signaled to exit
exit signal.wait();

// Shutdown the component and threads
cmpt->shutdownComponent () ;

// Give a little time for proper shutdown
DeVivo: :Junior::JrSleep (100) ;

// Free the component
delete cmpt;

The identifier for any component can be altered simply by changing the parameters to the

component constructor. To change the OCU to use subsystem ID 105 and node 2:

|ExampleOCU * cmpt = new ExampleOCU (105, 2, 200);

JTS Users Guide, Ver 2.0 Copyright 2013 Page 180 of 265

/ JAUS

tool set

In order to help route messages both within a node and to external (remote) nodes, the JTS
Software Framework includes a Node Manager (NM). The NM is responsible for all incoming
and outgoing UDP traffic on the JAUS port, assigned by the IANA as 3794. The NM can be
found in the JTS install, under the ‘nodeManager’ directory. Generally, the NM source code will

not need to be modified.

All generated languages connect to the same NM, because they all use the C++ Software
Framework to connect. As a result, the included C++ NM is run regardless of what language the

generated code is in.

To run the Node Manager, simply build using ‘scons’ and run the executable from the bin

directory:

$> cd trunk/JAUSToolset/nodeManager/

$> scons

scons: Reading SConscript files
scons: Building for CYGWIN...

scons: done reading SConscript files.
scons: Building targets

scons: ~.' is up to date.

scons: done building targets.

S cd bin

$./NodeManager nm.cfg

When the NM receives a message either from a component within the node or a component on
a different node, it routes the message to the desired recipient, if known. To do this routing, the
NM maintains a mapping of JAUS identifiers to source IP address and port that is updated for all
incoming messages. When a local component is created, the framework automatically

“registers” with the NM in order to update this mapping.

The default configuration file, nm.cfg, offers optimal settings for most environments using UDP
communications. While a complete discussion of configuration options is beyond the scope of
this document, we do note the existence of selective logging levels is LogMsgLevel. This output

may be useful in trouble shooting communications problems.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 181 of 265

tool set

& 1aus

17.10 Summary

In this Chapter, we examined the C++, Java, and C# code generated by the JTS. While the
messages are completely implemented by the generator, the user must add the message
handlers, actions, and guards that define the service’s behaviour. The examples offered
previously are selected for their simplicity in demonstrating common techniques and
approaches. When working with services that rely on inheritance and/or nested states, the
generated function stubs can become complex and confusing. However, the same guidance
can be applied to these cases. For additional suggestions on dealing with complex behaviour,

please see the JAUS Tool Set forum at http://forums.jaustoolset.org/index.php.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 182 of 265

http://forums.jaustoolset.org/index.php

tool set

S 1AUS

18 Document Generator

JTS provides a documentation tool that can output service specifications in several different
types/formats:

1. Framed HTML, resembling Javadoc in structure
2. Linear HTML, a single long HTML page
3. Microsoft Office Open XML Document (Word .docx) format

Currently, documents may only be generated for Service Sets. The generated document details

the Service Definitions in the selected Service Set.

18.1 Document Generation User Interface

To perform document generation, click the “Generate Documentation” button on a Service Set's
editor window (Figure 120), or click “Generate Documentation” on the context menu after right-

clicking a Service Set’s icon in a list containing Service Sets (Figure 121).

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 183 of 265

i JAUS

tool set

$ CoreServiceSet v1.0 [ServiceSet]

Name: CoreServdceSet

D: cove.cenice.cet

Versiom: 10

All Core Semvices

Description

Samvice Defs: B Service Defs (8)
Constant Sets: ® Constant Sets (0)

Refetancing

Elaments: {oomponents)

| Crestes On 1200742010 10:30

Figure 120: Generate Documentation via ServiceSet Window

|4 T
» T

q Service Sets (2)

| Bervice SetName w |[contains || [

ﬂ CoreSerniceSetvl 0 [ServiceSet]
| ManipulatorServiceSet v1.0 [ServiceSe]

Open
Edit
B copy

Export To JSON
@ Refresh

& Delete

Generate Documentation |
W

>

Figure 121: Generate Documentation via Context Menu

After clicking “Generate Documentation” the “Select Documentation Generation Output Options”

dialog will appear. This dialog lets the user choose what type of documentation is generated,

JTS Users Guide, Ver 2.0 Copyright 2013 Page 184 of 265

& JAUS

tool set

and the directory where document generation output will go. A custom stylization directory can
also be selected. Section 18.2 provides more information about this directory and what it
does. The “Delete Intermediate Files” checkbox controls whether various intermediate files
created during document generation are removed after generation is complete. For a large
service set, these files will be correspondingly large, so deletion saves space. See Figure 122
for an example of the dialog in action.

Select Document Generation Dutput Options _)g

Select Output Directory
[CADocuments and Seftingstdurkan] | [Browse.. |
Select Outout Type ¥

[Linear HTML [v] @ Delete Intermediate Files

Select Custom Stylzation Directory {optional):

[C AprojectsWTE-branchWAUSToolsetiGUlresourcesidoc Generator] | Browse | | Restore Default |

| Generate Documentation | | Cance! |

Figure 122: Output Options Dialog

The Output Directory text field defaults to the current user's home directory and the Custom
Stylization Directory defaults to the location of JTS’ standard document generation stylization
directory. The Output Type defaults to Linear HTML. Click “Restore Default” to reset the custom
stylization directory to the standard one. The Browse button for each text field pops up a Select
Directory browsing dialog to ease selecting a directory

Once satisfied with the output directory, output-type, and custom stylization directory, click
“Generate Documentation”. Note both the Output Directory and Custom Stylization directory text
fields must be populated with a directory that actually exists before document generation is
allowed. |If either directory does not exist, an error popup appears when clicking “Generate
Documentation” and the user is allowed to fill in a valid directory.

18.2 Custom Stylization Directories

The Custom Stylization Directory selected via the Output Options Dialog contains all of the files

used during the document generation process, including document templates, static image files,

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 185 of 265

tool set

&1Aus

CSS stylesheets for styling HTML, and the XSLT stylesheets that transform different
representations of Service Definitions into their final output form. The Document Generation
Stylization Customization Guide, a separate document, gives instructions regarding the creation
and development of Custom Stylization Directories to customize document generation output.
Consult the Document Generation Stylization Customization Guide for more information,

including customization examples.

18.3 Documentation Generation-General Behavior

After clicking “Generate Documentation”, all required static files are copied to the output
directory, and the document generation process is performed. Although subdirectories will be
created, the main documentation file is located at the top level of the output directory. The table
indicates how the output is named. <service_set name> represents the name of the Service

Set selected for document generation.

Table 5: Output File Names

Output Type Main Output File Name

Linear HTML

e <service set name> output.html

e Framed HTML e index.html

e Word .docx e <service set name> output.docx

JTS Users Guide, Ver 2.0 Copyright 2013 Page 186 of 265

tool set

& 1AUS

Both of the HTML-type outputs make assumptions about the location of included files relative to
the output document, so when packaging documentation for distribution, ensure the directory
structure is maintained. The table below summarizes which files must be kept in the same

directory as the main output file, for each output format:

Table 6: Files to Keep with Output

Output Type Keep what files in position?

Linear HTML . .
e images/ directory

linearStyleSheet.css

e Framed HTML e Everything

e Word .docx e Nothing - .docx is self-contained

For the documentation to be truly useful, descriptions for services should be filled out, as well as

interpretations for the various message components.

18.4 XMLMind XFC Dependency

In order to generate Word .docx format documentation, the document generator requires
XMLMind’s XSL-FO Converter (XFC). XFC is a closed-source product, but a free Personal
Edition is available. Note the Personal Edition will add a watermark in the footer of the pages it

generates.

JTS provides a “dummy” version of the XFC Java library inside the 1ib/runtime directory
below the directory where JTS.jar is located. The jarfile is named xfc-stubs.jar. The XFC
download should provide a file xfc. jar; this file contains the XFC Java library. To begin using
the real version of XFC, remove xfc-stubs.jar from the 1ib/runtime directory and copy
xfc.jar to the same location. If a real version of xfc.jar is not added to lib/runtime, or

some other location on the CLASSPATH when running JTS, and the dummy is not

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 187 of 265

tool set

$JAUS

removed, no Word output will be generated. Console output will be displayed indicating the

dummy code was run.

18.5 Behavior Diagrams in Generated Documentation

The document generator adds diagrams illustrating protocol behavior for each service
documented. However, the protocol behavior diagram needs to be formatted elsewhere in JTS
for each service, or else only a placeholder protocol behavior diagram image will be output for

the service in question.

To format a service’s protocol behavior diagram, open the Service Definition in the Service Set
being documented; open its Protocol Behavior, then save the behavior diagram to file. The file
can be saved anywhere, with any name. Section 8.3 “Describe the Protocol” describes how to
access the Protocol Behavior for a Service Definition; in the protocol behavior editor, the Save
button is found in the toolbar. After the save is performed, the diagram is properly formatted and

will not be replaced by a placeholder in generated documentation.

18.6 Navigating Linear HTML and Word Documentation

The Linear HTML and Word documentation types have a table of contents that provides links to
locations in the rest of the document. When using the standard document generation stylization
directory’s template documents, generated Linear HTML and Word documents have the

following structure:
e Title Page & Introduction (Static text from template document)
e Table of Contents, Table of Figures, Table of Tables
e Section 1: Scope: (Static text from template document)
e Section 2: References: (Static text from template document)
e Section 3: Common Conventions: (Static text from template document)

e Section 4: Service Definitions: Contains information about each service definition,

including message sets and protocol behavior

JTS Users Guide, Ver 2.0 Copyright 2013 Page 188 of 265

2 JAUS

tool set

e Section 5: Notes: (Static text from template document)
e Appendix A: JSIDL code listings for each Service Definition.

The Document Generation Custom Stylization Guide describes how to customize the

template documents and alter the output document’s structure for Linear HTML-type and Word-
type document generation.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 189 of 265

tool set

FJAUS

18.7 Navigating Framed HTML Documentation

The Framed HTML documentation type is more complex in appearance than Linear HTML and
Word output, and works similarly to Javadoc documentation. Framed HTML JTS provides a
HTML documentation tool that outputs service specifications in a presentable HTML format. In
release 1.0 of the tool, the HTML document generator can only be executed from a Service Set
internal frame. In the figure below the button called “Generate HTML Documentation” will

generate the output documentation at a user specified path.

“%’ ManagementServerSet v1.0 [ServiceSet]

Name: ManagementServerSet

ID: urn:ManagementServerSet 54 Delete

Version: 1.0 Export To JSON |

& Refresh J

I
[
[[Ge

nerate HTMLDocumentation |

Description:

Semvice Defs: Sermice Defs (4)

Constant Sets: Constant Sets (0)

Referencing
Elements: iegmpanens}

Created On: 05/12/2010 14:10

Figure 123: HTML Documentation Generation
The output contains four frames. The frames on the left list menus for navigating content:
e Upper left: Navigate service set
o Center left: Navigate service definitions
e Bottom left: Navigate message definitions

The large frame to the right is used to display content, such as service sets, message sets,

service definitions, and message definitions. Figure 124 provides an example.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 190 of 265

'JAUS

tool set

JSIDLV1.0 Sarvice
Definitions

2
45 Lefsfzn
4 Vegapas Dubadiry

S Lty
Intig

All Service
Dafinitions

All Message
Definitions

AccessControl Service

Description:

The Accen Commol service ofiers 3 base isteriace for aogarng presmptible mchiive commol 10 o or more rebiond services e wellze fae fescaon Owee the exckaone conorol w sstblnbed
the pelleted sorvices shall (el crocigs couzssnch crigaateg Som the cootiudiy conrpooed. The ssfhorty code pomacter of this servics is esod S procrptios oad & 10 be sef ogual to st of
ks coneoleg ot Thes service o ass prasts © 1 10 e bighes sshorky clieet et 1 reguesing exchesere coarel. Commnoods froem o other chests are sgaored wiiess S0 o chet Wik
bigher mzboety Thn service mmasgzin swo vebues, @ defuadt valae e o razvens valoe of 2 field callod mebority code The Sefast vaber i the valor tht the senvice i pre—corfimzed with
Arcess 5 providied 10 chem based on the valee of hex aothonty (o008 1 companscn 30 e Cusrent valoe of da5 senice

i Assumptions:

Mesiages mary be defeyed Jodt or sevedernd

References:

Inborits from: Evem
Client of: Nooe

Declared Constant Set:

Rufresced comstants: Nooe
Defined consrants: Nooe

Declared Type Set:

Rek iC. N

Refereasnd Types: Noas

Message Set:
Input Set
Message

Figure 124: HTML Documentation Output

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 191 of 265

&1Aus

tool set

19 Wireshark Plugin

The Wireshark plug-in was created to allow users to use the popular network analyzer tool to
monitor JAUS message traffic in real time. This plug-in captures JAUS messages and provides
detailed information about their data content in the format defined by the JSIDL message

specification. The following sub-sections describe how the plug-in is to be built and executed.

19.1 Installing JAUS Plug-in

19.1.1 Download and Install Wireshark

Download Wireshark from http://www.wireshark.org/download/win32/wireshark-win32-1.4.0.exe.

Note: NOTE: Libraries included in the JTS distribution are only tested with Wireshark 1.4.0. Build-
ing from source to work with a different version is beyond the scope of this Guide. Please
reference the Wireshark development guide at
http://www.wireshark.org/docs/wsdg_html_chunked/.

19.1.2 Copy and Move files
Copy the following files:

e jaus.dll to <Wireshark installation target directory>\plugins\[version number]\
e libxml2.dll, iconv.dll, and zlib1.dll to the <Wireshark installation target directory>
Make a directory or copy the folders if supplied to <Wireshark installation target directory>

e packet-jaus-support\jausxmi\

The dissector is assuming that the xml files of jaus messages are in the packet-jaus-

support\jausxml\ folder, copy the xml files to here.

19.2 Using JAUS dissector

19.2.1 Run Wireshark.exe

Note: If running Windows 7, you may need to run wireshark in administrative mode because the
plugin needs write access to the program files directory.

Wireshark will load the plug-in on start-up.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 192 of 265

http://www.wireshark.org/download/win32/wireshark-win32-1.4.0.exe
http://www.wireshark.org/docs/wsdg_html_chunked/

& 1AUS

tool set

Check to see if it is loaded by typing “jaus” in the filter box which should then turn green.

i The Wireshark Network Analyzer = |6
File Edit View Go Capture Analyze Statistics Help

Bwoded BEEXETE AasdeT L EE A E¥M % B
Filter: jausl v Expression.. Clear Apply

| Ready to load or capture No Packets | Profile: Default

Figure 125: Wireshark Network Analyzer

The example capture file JAUS port_example run.pcap can be loaded into wireshark
(File>open) to show the dissector working. This example already has all other packets that were

not jaus filtered out but using the jaus filter will do this on any capture.

The ports on which the jaus filter will register with Wireshark can be changed in the preferences
(Edit > Preferences — Find the JAUS protocol after expanding the protocols list). The two options
are to change the standard JAUS port for TCP/UDP from the default of 3794 and the UDP port
on which intra-node messages will be on when intra-node forwarding is enabled in Junior Node

Manager.

Enable intra-node message forwarding in the node manager configuration file using the following

as an example:

<UDP_ Loopback Configuration

EnablelLoopback = "1"

UseOPC2.75 Header = "O"
UDP_Address = "169.255.0.100"
UDP_Port = "55555"
MulticastTTL = """
MulticastAddr = "239.255.0.100"
MaxBufferSize = "70000"

/>

This will enable the loopback using the JUDP header sending messages to an unused network
IP of 169.255.0.100 on the port 55555.

The address can be another computer on the network that you want to see the messages with or
the loopback address of 127.0.0.1 that will be viewable in Wireshark on Linux, not Windows. If

you want to use a Multicast Address, set EnableLoopback to “2”.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 193 of 265

& JAUS

tool set

Bl A5 _pet_mwerle,_run peap - Wirshark Py s
fle [t Yiew Go Ciptum Snsle Statistics Help
Beadae 2RAX@A NeesrewT2 EE Qs a0B % @

Eifter: jaus * Bapresson.. Llear Apply
No. . Time Source Destnation Protocol Info ¢
SN AR IS AR AL D, IV I AL L AL D, AV e Rl d et s t“‘.lhl‘ AN S AP W sy U‘
1ority 6)
pr'lcﬁ }
arity &)
cation tpr'lu-ity (3]
ty

urmrny

L4261 193,128, 36.120 52,128, 36,15 40)oueryucm : arlt{. :
220 13427263 193.128, 36,152 192,128, 36,120 18US Cod(OXDEAS) uoorndemﬂ'lmion foriority 6]
221 13.346850 192.128.36,120 192,128.36,152 1805 Cad(0x2400) Ipriority 6]
222 19,347011 192.128.36,120 192,128, 36,152 JaUs Cad(0x2801) --- [orfority §
223 19,447106 192.128.36,152 192,128, 36.120 JaUS Ced(0x3200) --- [priority &
224 19,447112 192.128.36,120 192,128.36.152 J8US Ced(0x2801) - [nr‘oﬂty s
225 19447542 193.128.36,152 192,128, 36.120 JaU5 Ced(OxAB01) --- [orfor .
226 19447880 197.128, 36,120 192,128, 36.152 JaU5 Ced(0XDB29) meryt-u-uaewnmlm tpriority
227 19,447683 192.128. 36,152 192,128, 36.120 2805 Cd(0x4B01) forioriy €)
228 19,448086 192.128.36,120 192,128, 36.152 1805 CMd(OX2801) --- priority 61
229 19,448091 192.128.36,152 192,128, 36.120 U5 Cad(OXED29) ReportCamerazdentification priornt
230 19,448287 192.128: 36,120 192,128.36.152 1805 COd(OXDBAS: © ferfority
231 19448442 192.128.36,120 192,128.36.152 IANE (0x
232 19448616 192.128.36,120 192,128.35.1 IMWE CmI(OXEOLZ
233 19,448702 192.128:36,152 192,128, 36.120 IS CRd(DXASOL,
234 19,448785 192.128.36,120 192,128, 36.152 IS CRICDXED3?
235 19,448972 192.128.36,120 192,125.36.152 IS CRa(DXRD3S
236 19,449162 192.128.36,120 192,125.36.152 JAUS CBdCOXEFOL
237 19449307 192.128.36.120 392,128.36.132 JANS CRdCOXEFOL
238 19.449473 192.128.36.120 392,128.36.152 JANS CedCOXEFQL
239 19.43963G 192.128.36.120 192.128.36.157 Jaus Cod(OXKEOL =

* .

Frame 216 (439 bytes on wire, 439 bytes captured) -
Ethernet I, Src: AsproCom_Cazal:b2 (00:40:%53:0a:al:b2), Dst: 3com 26:3F:47 (00:10:4b:26:3F:47) ;o
Internet Protocol, Src: 192.128.36,152 (192,128.36.152), Dst: 192,128.36.120 (192.128.36.120)
uSer patagram Protocol, sec Port: jaus (3794), pst Port: jaus (3794)
JAUS Robots, Msg: ReportServices, is_Command: false
Nessage Header, Omd: OxpDLa?
4 Message Properties
Command Code: ReportServices (OxDIAT)
i Destination ID: 120.1.40.1 €120.1.40.1)
W Source Io: 152.7.70.1 (152.7.70.1)
4 bata contral: Ox0175
Sequence Mumber; 0
= pata (373 bytes)
[L15T]): Zervicetist (reg)
[cF] (3) min: O, max: O, count: 3
[sEquence]: servicesaqg (req)
- [Recorp]): ServiceType (req)
[FF] ServiceType: (one) 0 (Ox0)
[LIST]: InputNessage (req)
[¢F)] (4) min: O, max: O, count: 20 -
0000 ©0 10 3b 26 3F 47 00 40 33 Da al b2 08 00 2% Q0
0040 01 39 00 00 40 Q0 40 L1 &f 33 cO 80 24 93 <O 80
0020 24 78 O& d2 Oe d2 01 95 23 d3 4a 41 55 53 30 1
0030 20 30 06 02 a7 d4 01 28 D01 78 01 46 07 98 75 01
0040 00 00 03 00 00 14 O0d 00 00 00 00 00 Qe 00 00 00
0050 ©0 00 08 00 00 00 00 00 0a 00 00 00 00 00 Ob 00
0060 00 00 00 00 Oc 00 00 00 00 00 al fO ff Q0 00 00

cn=m NEA KL DA Am AA e BN AN A e AR b Es e

Flle: "C! UALS port_exsrnple run.peap’ 550 . Packers 3382 Dq:l:,od 3342 Mavked: 0 Profie Default

Figure 126: Wireshark Protocol Traces with Packet Dissection

19.3 Things to Know

The header is dissected whether or not the message is in the xml. If the message is not in the
xml, a --- is reported as the name in the list and NotFoundInXML in the tree and the data is left
alone. A file is created in the packet-jaus-support/ folder named Messages_Found.txt to

show/check that the xml parser found messages.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 194 of 265

2 JAUS

tool set

The filter can be used to filter out certain messages or IDs by right clicking on the item in the tree

and click “Apply as Filter” or type in a filter in the box (names at bottom left when a tree item is
selected). Examples:

jaus.command == 0x4202

jaus.dest == 152.7.70.1

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 195 of 265

tool set

&1Aus

20 Protocol Validation

PROMELA (Protocol Meta Language) source code can be generated and used for validation of

the protocols defined for services.

20.1 Overview

Formal validation of a software model saves time that could be wasted implementing a model
that does not work properly. Validation begins by generating PROMELA code that is used to
describe a protocol or state machine. The PROMELA code is then interpreted by SPIN, which
allows for validation of the protocol. In addition SPIN can be used to run simulations of the

model to ensure that it behaves as expected.

20.2 Environment

The list of supported systems is provided below.

PROMELA Generation SPIN Validation via
Windows | XP XP via JSpin v.5.0 (SPIN v.6.0)
Linux Ubuntu 10.04 Ubuntu 10.04 via JSpin v.4.7(SPIN
v.5.2.5)
Cygwin Not Tested Not Tested
Os X Not Tested Not Tested

There are no additional packages required for generating PROMELA source code. See section

3.2 for all JTS required packages.

20.3 Tools

SPIN Model Checker: The main tool for validation is SPIN, a popular open-source software tool
used for formal verification of distributed software systems. The SPIN Model Checker can be

found at http://spinroot.com

JTS Users Guide, Ver 2.0 Copyright 2013 Page 196 of 265

http://spinroot.com/

& 1AUS

tool set

jSpin: Throughout this manual, jSpin will be used in all the examples. jSpin is a Java GUI that
is wrapped around SPIN. The results you get from SPIN and jSpin should be identical as long
as all the options selected are the same.

20.4 Workflow

The service needs to be defined using the methods described in the previous sections. Once the
JSIDL for the service has been produced or the service set has been defined in JTS, there are
three steps to perform: generate PROMELA code, modify the generated code, and use jSpin to
validate the model.

20.5 Installing and Getting Started

20.5.1 Obtaining and Installing the PROMELA Code Generator
The PROMELA code generator is installed as part of JTS. See section 4 for the details.

20.5.2 Ant Targets

The targets for the PROMELA code generator can be found in the table from section 4.3.

20.5.3 Generating PROMELA Source Code

Generating the source code can be done two different ways.

First, the user can generate source code from the JTS GUI. This is accomplished by opening

the component or service set and clicking the “Generate Promela Code” button.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 197 of 265

tool set

&1Aus

EEF ACSS v1.0 [ServiceSet] 5 o
Name: ACSS [7 Edit |
ID: urn jts.acss [Export To JSON [
Version: 1.0 l & Refresh |
23 Delets 3

| Generate Documentation |

Description: | Generate Promela Code |

Service Defs: B Service Defs (3)
Constant Sets: ® Constant Sets (0)

Referencing

Elements: {Components}

Created On: 05/26/2011 11:02

Figure 127 Generate PROMELA Source Code

This can be done for a Component as well. Clicking the button causes a dialog to pop up
allowing the user to select the location of the output files. In the event that files have already
been output to this location, the code generator automatically renames the files with conflicting

names to prevent data loss.

The second way to generate PROMELA source code is to run the generator in a stand-alone
mode. This is done by running a command formatted as follows: “java —jar
PromelaCodeGenerator.jar <main JSIDL file path> <JSIDL dependency path> <JSIDL schema
path> <optional: output path>". The argument descriptions are found inside the angle brackets.
For Windows, make sure that any arguments containing spaces are contained within double
qguotes. If the last argument is not specified, the system property “user.home” is used for the
output location but "/JSIDL_Validation/PromelaOutput/" is appended to the end to avoid

cluttering up the directory.

Due to the resolution of references that is done by JTS, the output of the two methods above
may not be the same. For instance, if the code is generated for the core service AccessControl,

the stand-alone mode will result in several more files. The extra files hold definitions for data

JTS Users Guide, Ver 2.0 Copyright 2013 Page 198 of 265

2 JAUS

tool set

that is referenced in the rest of the model. The JTS GUI generated code contains the same
definitions, but they are instead inline with the service definitions and can be found in the files
corresponding to those service definitions.

20.6 A Practical PROMELA Example

This example will be using the JTS GUI to generate the code for validation. As a simple
example, the Addition service will be used, that is described in section 9.

20.6.1 Getting Ready to Generate Code

Follow the directions in sections 9.2 through 9.4 to create the service. When you finish the
service set should look something like this:

;:‘é.- ur‘.,:.:.l '4;}5@3*“'3%"‘35‘ - g,‘ x J
.&- - X . L
RS AdditionServiceSet v1.0 [ServiceSet] E D
Name: AdditionServiceSet [/ Edit |
ID: urn.jts.AdditionServiceSet | Export To JSON |
Version: 1.0 l @ Refresh |
25 Delete 9
| Generate Documentation |
Description: | Generate Promela Code |
&I Senvice Defs (1)
~Service Set Service Defs
Service Defs: P =
W AdditionServerServiceDefy1.0 [ServiceD
< 2]
Constant Sets: B Constant Sets (0)
Referencing
Elements: {Components}
Created On: 05/272011 13:20

Figure 128 Addition Service Set Created

For this example the AdditionClient will not be generated.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 199 of 265

&1Aus

tool set

20.6.2 Generate Source Code
To generate the PROMELA source code, open the service set that was created for the
AdditionServer. Next, click on the “Generate Promela Code” button and select the location for

the output files.

3 AddiionSeniceSetvl.0 (ServiceSet] el
LY .'~ e} i .

‘%‘ AdditionServiceSet v1.0 [ServiceSet] E m

Name: AdditionSernviceSet [) Edit |

ID: urn.jts. AdditionService Set | Export To JSON |

Version: 1.0 | i Refresh |

Look In: |fF ~dditionPromela |v|
Description:
H Seni
rSer
Service Defs: +
w
File Mame: |C:1Dncuments and Settings\cmessmenDeskiopAdditionFromela |
Constant Sets: Cons
, Files of Type: [All Files [v]
Referencing
Elements: G Gy
Created On: 0872712011

Figure 129 Select Location for Generated Code

20.6.2.1 Files Generated for Every Service

The following files will always be generated at the location selected:

main.pml — This file should never be manually edited or the protocol will not match what is being
validated. This file contains the service process, which contains the state machine that was

defined for the service.

channels.pml — This file should never be manually edited, but should not affect the model. This
file contains “channel” definitions that are used by the service. Channels are used to send and

receive specific data and cannot be used to send data other than what is defined.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 200 of 265

¢ JAUS

tool set

userEditableClients.pml — This file contains a rudimentary implementation for a client process.
All it does is randomly select a message to send to the service. The message data is not
initialized or meant to convey any real meaning. This file should be edited by the user to

activate specific behavior within the service.

userEditableConfig.pml — This file contains configuration data for the service and client
implementation. The purpose is to centralize the location for all configurable data. The default
configuration includes three settings: CLIENTS, QUEUE_SIZE, and CLIENT_CHANNELS.
CLIENTS is the number of client processes to be used in the validation. CLIENT_CHANNELS is
the number of channels that are required to send messages from the service to a specific client.
Most of the time CLIENTS and CLIENT_CHANNELS are the same, but can be different if the
user adds another process into the model. An example of this is when the user creates a

process to send system events.

userEditableEvents.pml — This file is used to store event data definitions and as a location for
event implementations. The file contains directions within the file comments for implementing

events.

userEditableGuardsAndActions.pml — This file is where the majority of the user editing will occur.
This file contains definitions for all the guards and actions contained within the model. These
definitions need to be modified since, as generated, all guards evaluate to ‘true’ and all actions

just print what the action function name is.

20.6.2.2 Files Specifically Generated for this Service
The following file was generated for the defined service; the number of files and their names

depend on the service set definition:

urn_jaus_example_addition_server_static.poml — This file’s name is constructed from the ID of
the definition, since the ID is guaranteed to be unique within the service. The file contains all the
data defined within the service definition whose ID = “urn_jaus_example_addition_server”. All
files used by the service that contain definitions will cause a corresponding unique file to be

generated.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 201 of 265

tool set

&1Aus

20.6.3 Modify Generated Service Code

20.6.3.1 userEditableConfig.pml
In this example the configuration will not be modified from the default values, except for the
CLIENT_CHANNELS value will be increased to 2. This is because, in the next section, a new

process will be added to the implementation in order to start the initialization of the server.

20.6.3.2 userEditableEvents.pml
There is a single event that moves the service from its initial state into a ready state, so the code
that is added to the file is:
active proctype fireEvents () {
InitToReadyEvent ! pid;
}
This code creates a process that sends the InitToReadyEvent message to the server. The

parameter “_pid” is a PROMELA system parameter that is equal to the process ID of the process

that the parameter is found within. In this case it is the process ID of the fireEvents process.

20.6.3.3 userEditableGuardsAndActions.pml
This file will contain three actions and no guards. The actions are inline functions that are each
a direct replacement for the call which is made from the main service. For this example, the
default implementation is fine for the first two actions since they are informative:
inline Action serverInitialized() {

//Replace this print statement with a code line ending with a ;

// Ending a line with a back-slash allows the definition to continue on the next line.

// This can be repeated as many times as necessary. All 3 of these lines would make up the

definition.
printf ("executing action: Action serverInitialized();");
}
inline Action_ fsmStarted() {
//Replace this print statement with a code line ending with a ;
// Ending a line with a back-slash allows the definition to continue on the next line.

// This can be repeated as many times as necessary. All 3 of these lines would make up the

definition.

printf ("executing action: Action fsmStarted();");

JTS Users Guide, Ver 2.0 Copyright 2013 Page 202 of 265

$JAUS

tool set

}

The last action is intended to send a response to the client process. This type of action has a
long name that is a concatenation of the message type that was received and the action name,
with “_Action_" placed in between. The default action content will be removed and replaced so

the action then looks like this:
inline urn jaus_example addition server QueryAddition Action sendReportAddition (inputMessage)
{

// get data out of the inputMessage

int inputdataAl;

inputdataAl = inputMessage.AdditionInput.Al;

int inputdataA2;

inputdataA2 = inputMessage.AdditionInput.A2;

// declare instance of output message

urn_jaus_example addition server ReportAddition outputMessage;

outputMessage.AdditionOutput.AdditionResult = inputdataAl + inputdatalA?2;

// send the message to the client

ReportAddition[incoming pid] ! pid, outputMessage;
}
Notice the “incoming_pid”. All messages that are sent or received include the process ID, and
for messages received by the service, the pid for the sender is always stored in a variable called
‘incoming_pid”. Since the inline function has access to all the caller's data, we can use the

“incoming_pid” to ensure that the response message goes out on a channel that is being

checked by the client application with the same pid.

20.6.3.4 userEditableClients.pml

The default client implementation is a simple loop that is a one-state state machine with an
internal transition that is implemented like a default_transition, meaning there is no trigger
defined and there is no exit from the state. This state will be modified to include receiving the
response message from the service. To make it even simpler, after the QueryAddition message

is sent, a simple transition will occur taking the client to a state where it will just wait for the

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 203 of 265

tool set

&1Aus

response. Once the response is received, the result will be printed and the client will exit. Now

the client implementation looks like this:

// Client implementation
active [CLIENTS] proctype clientProcess() {
// declare data for the messages
urn_jaus_example addition server QueryAddition QueryAddition impl;
urn_jaus_example addition_server ReportAddition responseMessage;
// put some values into the declared data here
int counter = 0;
pid service pid;
CLIENT START STATE:
do
true ->
printf ("send messages\n") ;
counter = counter + 3;
//set the data and modify it so we get so variation in our results
QueryAddition impl.AdditionInput.Al = 5 + counter * 2;
QueryAddition impl.AdditionInput.A2 = 31 + counter;
//This message sends two numbers to be added
QueryAddition ! pid, QueryAddition impl;
goto WAIT FOR RESPONSE STATE;
od;
WAIT FOR RESPONSE STATE:
do
//receive the message on the channel corresponding to our pid
: ReportAddition[pid] ? service pid, responseMessage —>
printf ("Received a response with value = %d4d",
responseMessage.AdditionOutput.AdditionResult) ;
//goto CLIENT START STATE;
break;
od;
}

// End of client implementation

20.6.4 Validate the Generated Model

There are two main ways to validate the model using SPIN. The first method is to run the
executable pan.exe, which is generated, compiled and run when the user selects “Verify” from
the jSpin toolbar. The second method is to run a simulation by clicking on the “Random” button
from the toolbar. A simulation is sometimes necessary if the state machine interactions are
complex enough to cause state space explosion. State space explosion can even happen with

our simple example, if the user comments out the “break” statement at the end of the previous

JTS Users Guide, Ver 2.0 Copyright 2013 Page 204 of 265

tool set

&)Aus

section and uncomments the “goto CLIENT_START_STATE;” To avoid state space explosion,
always allow the client process to finish. For this example, all of the validation will be done using
jSpin.

jSpin Version 5.0

LTL formula

File Edit Spin Conver Option: Setting Outpu SpinSpide Help

Open | | Check | Random | Interactive | Guided | Weak fairness Safety v | |Verify | Stop | | Translate | Load | LTL name | | §
- rain.pmi § main.pmil = :

1/

2 * Thizs Promela file was auto-generated wsing JTS on Fri May 27 :

3 ¥ ID=urn.jts.AdditionServiceSet wsersion=1.0

4 * D0 NOT MODIFY 3

5 * Thiz file contains type definitions found in the JS5IDL that

=S *

7

8 /ww

g * Thiz is the main model file and will contain instances of alT |

o v

11

12 #include "userEditableConfig.pml"
13 #include "urn_jaus_exanple_addition_server_static.pm1"

15 // Create channels for all the messages and events.
16 #include "channels.pnl"

12 // These includes should come after message and ewvent channels a
19 #include "userEditableBvents.pmnl"

20 #include "userEditableCuardsAndActions.pnl"

21 #include "userEditableCldients.pnl"

24 // starting state machine definition : additionServerFSM

el :n'~||+'; o mractune adddtianSar nTFQMr'\«r
1 I

done!

Figure 130 jSpin 5.0

20.6.4.1 JSpin Settings
There are a few settings that should be configured before attempting to validate a model.

First, the check for an end state should be disabled since JSIDL doesn’t have an end state.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 205 of 265

tool set

¥ jaus

jSpin Version 5.0

File Edit Spin Comvert 0p1iuns| Settings Output SpinSpider Help
Check | Randorf Common Crl-| @ Weak fairness S

- main.pmi | main.pn| Check

1w Random

z ¥ This Prome| Interactive o-generated using

3 % ID=urn.jts|Verify =Set wsersion=1.0

4 * DOINOTlMOD ¢ compiler o .

= ¥ This file =finitions found dr

& "y Pan

7 Guided

8 /v Default . .

9 ¥ This 1s th . Te and will contair

0 v/ Save install

11 Save current

12 #include "userEditableConfig.onl"
Figure 131 Turning Off End State Checking

This is done by selecting the “Options” menu and clicking on “Pan”.

PAN_OPTIONS

|-x_-¢]

| OK H Cancel ‘

Figure 132 Setting Pan Options
Adding the “-E” to the existing options, tells SPIN to not check for end states.

The other setting that should be changed is the statement width.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 206 of 265

tool set

$JAUS

jSpin Version 5.0

File Edit Spin Comeert Options Settings 0mpul‘ SpinSpider Help LTL ft
Open | | Check | Random | Interactive | G| Maximize pty
- [

- main.pml / main.pml Exclude variables CtlU | ooy
1 Exclude statements Ctl-) | root:)
2 * This Pronela file was 2 Statement width sroot:)
3 ¥ ID=urn.jts.AdditionSer - -
- rilﬂODIFY Wariable width CHE b i tian
E * This file contains typd Save output
& wf ¥ Raw output
; fuw Display raw Ctil-R 0
g * This is the nain model £ ||} clien 2>)
o */ JueryAdditionlpid, QueryAd
11 e
19 i emTodn Nimae Eda +alT Al amFa o 3 0

Figure 133 Setting the Statement Width for jSpin

Select the “Output” menu and click the “Statement width” menu item.

STATEMENT_WIDTH

20

| OK || Cancel |

Figure 134 Setting Statement Width Dialog

Once the dialog appears, set the value to something that should be able to hold an entire line of
code. If the width is too small, it is difficult to tell what the statement says in jSpin. In this

example the width is set to 80.

20.6.4.2 JSpin Syntax Checking
After editing the user editable code, always perform a syntax check by clicking on the “Check”

button at the top of the dialog. Error messages will be printed in the right hand pane.

A known defect in SPIN is that errors often reference the wrong line number or file. If you are
sure that the referenced line is correct, start looking elsewhere for the bug. Some suggestions
for where to look are: the same line number but different file, immediately before or after the line,

or the previous process definition.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 207 of 265

2 JAUS

tool set

When all else fails, start commenting out code till the error goes away. Start with commenting

out entire processes before looking elsewhere as this should narrow down the area.

20.6.4.3 JSpin Verify
Only code that has been syntax checked can be verified.

jSpin Version 5.0

File Edit Spit Convel Option Setting Outpu SpinSpid Help LTL formula ‘

Open | | Check | Random | Interactive | Guided | VWeak fairness [v] |Safety w | | Verify | Stop | | Translate | Load || LTL nan
- main.pml { main.pml —;:(Sp'in Wersion £.0.0 -- 5 Decenber 20107

1w + Partial Order Reduction

2 * This Promela file was auf | [Full statespace search for:

2 * ID=urn.jts.AdditionSerms never "T-la'im,) - (none specifiad)

4 W oo MOT MODIFY 1 asgertion wiolations +

5 * This file contains type T oyole checks - (disabled by -DSAFETY)

& "y imvalid end states - (disabled by -E flag)

= ggState—vectDr 504 byte, depth reached 16, wee grrors: O ses

g e 22 states, stored

9 * Thiz is the main model | | 2 states, matched

o 24 transitions (= stored+matched)

11 : o] elrtcnm'ic steps

12 #include "userEditableConfig| |i[hash conflicts: 0 (resolved)

13 #include "urn_jaus_exanple_ai |- £.195) memory Lsage (Mo te)

14 ggunr‘eached 1n proctype fireBEvents

15 // Create channels for all t| |: (OIDF 2 states})

16 #include "channels.pnl" géunr‘eached in proctype clientProcess

17 : {0 of 17 states)

18 // These includes should comt | Mnreached '!n proctype additionServerFsM

19 #include "userEditablsEvents| |- main.pnl:68, state 37, "-end-"

20 #include "userEditableCuards| |: (1 of 37 states)

21 #include "userEditableClient{ | [Pan: glapsed tine O seconds

22 i

23 :

24 // starting state machine de—éﬁ

Figure 135 Run Verify on Addition Example

Selecting the “Verify” button at the top of the dialog should result in text output describing the
model. First notice the line about a third of the way down that shows “errors: 0”. If you forget to
turn off end state checking, the number of errors would be 1. The other thing to notice is the
three sections that start with “unreached in”. This shows how many states the model never got
to. Notice that the end state is included here. Since the example specifically exits from
fireEvents and clientProcess, there are zero unreached states. The service contains one

unreached state, because it never reaches an end state.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 208 of 265

tool set

¥JAus

20.6.4.4 jSpin Simulation
While “Verify” gives some insight into the validity of the model, it does not guarantee that the
model acts like it was designed to. To ensure that the model reacts properly to input from the

client, a simulation can be performed. Click the “Random” button on the toolbar.

jSpin Version 5.0

File Edit Spin Convert Options Settings Output SpinSpider Help LTL formula
0pen| |Checlj || Random " Interactive " guided| Weak fairness Safety |v| |_.‘erify Stop | | Translate | Load | LTL hame SpinSpider d
-main.pmlh:; 0 proc - (:root:) creates proc O (fireEvents) =
AL 0 proc - (:root:) creates proc 1 {clientProcess)
> * This Q0 proc - (:root:) creates proc 2 (additionServerFSM)
3 ¥ ID=up |i/Fend messages
4 ono N i1 clien 22 QueryAddition_inpT.AdditionInput.Al = (5+(counter*2})
5 ¥ This| | o 0 0 0
& 0 0 0 0
7 g0 3 8] 0
g /e i clien 25 QueryAddition!pid,QueryAddition_inpl.HeaderRecord.MessagelDHeader, QueryhAddit
9 v This| | o 0 0 0
0 */ 0 0 11 34
11 =y O 3 o] 0
12 #include | |2 addit 58 QueryAddition?incoming_pid,urn_jaus_exanple_addition_server_QueryAddition_in
13 #include i [1,0,11,34]
14 0 0 0 0 =
15 // Creatg || © 11 34 o 3
16 #include i)) 0) 0 L L) L
17 J2 addit 40 Tnputdatadl = urn_jaus_example_addition_server_QueryAddition_inst.AdditionIn
12 // These | |: 1
19 #include 0 o 11 34
20 #include | |: Q 1 34 0 E
21 #include | |- } .0 } 0 . . } .
27 _;2 addit 23 dnputdataft? = urn_jaus_example_addition_server_QueryvAddition_inst.Additionln
23 : !
24 // starti | 1 0 o 11
25 active pr |: 34 0 11 34 o
2 pid d | , 3 ., @ n o ,
27 pid d 2 addit 36 outputMessage.AdditionOutput.AdditionResult = Cinputdatafl+sinputdatad2)
23 urn_j |: 1 1
24 i 11 34 0 0
30 goto addi |: 11 34 8] 11 34
31 /st o 3 o 0
EY) addit |: , . , , , , . ,
23 do §§2 addit 38 ReportAddition[incoming_pid]!pid,outputMessage.Headerkecord.Me[incaning_pid]
34 1 |z 1
2 Pk 11 34 45 0
%5 d 5 11 34 8] 11 34
37 N 0 3 o] 0
32) L)) ,)
29 il £1ien 29 ReportAddition[pid]Tservice_pid,responseMessage.HeaderRecord.MessageIDH[pid]
LN [2,0,45] 1
T
L = L =
Opened C:4Documents and SettingshcnessneriDesktophAdditionPronelaymain. raw —
done! x

Figure 136 Output from Random Simulation

The random simulation allows the user to see what line is being executed in the model, and

even what the data values are. Within the output screen, the first few lines show what

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 209 of 265

tool set

&1Aus

processes are created and what the process IDs are. The lines that follow wrap around several
times, making the content more difficult to decipher. Each line starts with the pid followed by the
name of the process. The field width is often too short to see the full process name. The next
section of the line is the code that is being executed by the process. In the first two lines of
execution, the client clearly sets values and then sends a QueryAddition message. The first line
starting with a “2” is the service receiving the QueryAddition message. Notice that directly below
that line is a set of square brackets containing the values of the data, “[1, 0, 11, 34]". In this
example 11 and 34 are the two numbers that should be added. The “1” is the pid for the client
application. The “0” is the MessagelDHeader value found in the QueryAddition Message header.

This value is not being populated in our implementation.

Skipping most of the intervening lines, the last line shows the client process receiving the

response with a value of “45”,

In most cases, a random simulation is sufficient. If more information is desired, turn on “raw

data” before running the random simulation.

jSpin Version 5.0

File Edit Spin Convert Options Settings Ogtput‘ SpinSpider Help LTL for
Open | | Check | Random | Interactive | Gui Maximize -

- main.pml / main.pml ———————{ Excludevariables cull | _ o oo,
1w Exclude statements Cir-) (der Eeduct
2 This Fromela file was au Statement width ch for:

3 I0=urn.jts.AdditionSeryi - -
Wariable width Ctrl-E :
4 DO NOT MODIFY | — olations
= Thiz file contains type Save output
= * ¥ Raw outout states
7 e e, depth r
g Display raw LR toprad
9 * This is the main model | 2 states, matched
0 v B 24 transitions {= store
11 0 atomic steps

Figure 137 Capturing Raw Output
Select the “Output” menu and make sure the “Raw output” box is checked.

Now, click the “Random” button to perform a random simulation.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 210 of 265

tool set

‘v ¥ JAUS

! Spin Version 5.0

e Bt Spn Corvant Optiens Settngs Oulint SpinSpider Help LTL formwts
Opons Clmck amdom Ideactae Guded Wk Tarness « | Safety - ety Stoy T ansdatn Lpod LTLngew SpinfSplder PMascien

msuuml‘l_‘_' E o

[VEE

2 This

3 T Dt 1

4 00 N Tiar 2 !

5 This cliuntPry saMassage . Add) tianlutp

5 1{ants A tion_tapT, HeaderRac(sagslDHeadn

B cHentProcess sy A Tior CTOURCTE S AR ST i LA

é clartProcessd 1) 1QuervAddi tion_isp] Addit npuT -

9 Tha

10 pro

1 HassagelDHaadar - ©

18 #include onfpsdlt = O

13 #n = arver_fuaryfAddi tion_1nat, beaderfecord Neasaoalileadar « (

14 asple_addition_server_luaryfddl tion_1re

18/ reatd us_oxaeple_additian_server_OuaryAddition_ing

16 #incTuds

17 cend sessages

1 Thessss proc 1 {client®r) ugerEditanleClionto.pul: 12 (uts agas'\\n')]

19 e ke clientPro 1 szage.Headerfe

20 Hine]uds clientPro age.Addytian

21 o " clientPro winpl, beade

2 clhientPro

53 cliantfro

24/

%5 4 oxecuting action: Action feaStartec|); proc 2 (additionServerfFSH) userEditablseluargsAndhction=.on1:25 (=tate 4)

% {print f{' sxecuting action:

27 n s i Headeriacurd Messsgelltuadsr « 0

% n.d scidi | g tierdutput, Ackdt £) 0

20 i i } anple_adds tion_ssrver_(uaryAdd! tion_tnst, Basderfscord NessagallHeader w (

30 ota addi it SHEZ D surn] Aus_wxampl e_adds Ul on_sarvar_fusryAdd] tion_inet Addi tionTrput,A) « O

3 17 o A 11005ervarFIN(ZT surn] aus_axaen e_addd b on_ssrver_QuaryAdd] tionthet, Addf tionTrgut A2 = O

32 acch g =

33 do 5 wroe 0 ATATO [vaTuss: 110

34 pr 0 tata (InitToReadyEvantDeripid]

35 A

E)

37 8 pr 1 - mters

23 = clhientf

E Y widid” chantPro :
418 . cliantPro 1} :responseMessage . dddi tianfutput AdditiorResult = O =l

= ™
Jpared C:'\locusonts and Settinga\ceesunerilach top\AdditicnPrasela\sain, ram >
dnnol =

Figure 138 Raw Data Output

Typing Ctrl-R or selecting “Display Raw” from the “Output” menu gives the above result.

The

key difference is that everything is displayed in the raw data. As each statement is displayed, a

complete list of all data within scope is listed.

processes, but nothing is hidden.

It is still possible to distinguish between

Both the normal and raw output methods allow the user to perform a manual analysis of the

functioning service to determine defects. In this example, the analysis can be boiled down to the

content of the ReportAddition message that the client process receives.

[ReportAddition([pid] ?service pid, responseMessage.HeaderRecord.MessageIDHeader, responseMessage

.AdditionOutput.AdditionResult]
queue 4 (ReportAddition[1l]):

clientProcess (1) :service pid = 2

JTS User’s Guide, Ver 2.0 Copyright 2013

Page 211 of 265

tool set

&1Aus

clientProcess (1) :responseMessage.HeaderRecord.MessageIDHeader = 0
clientProcess (1) :responseMessage.AdditionOutput.AdditionResult = 45
clientProcess (1) :QueryAddition impl.HeaderRecord.MessagelIDHeader = 0
clientProcess (1) :QueryAddition impl.AdditionInput.Al = 11

clientProcess (1) :QueryAddition impl.AdditionInput.A2 = 34

The inputs are 11 and 34, which gives the AdditionResult of 45.

20.7 Things to Know

There are a lot of important things to understand before attempting to validate a protocol:
PROMELA patterns, PROMELA data mapping to JSIDL, and special implementation topics.

Understanding this section is critical to understanding how the model works and how to debug it.

20.7.1 PROMELA Patterns

There are several patterns used in the code to produce the output model. State machines,
states, transitions, triggers, guards, actions, and naming conventions are all part of the model

generated from the main ServiceDef in the ServiceSet.

20.7.1.1 State Machines

State machines are implemented as a separate process. In PROMELA it looks like this:

active proctype serviceNameFSM() {

}

20.7.1.2 States
States are only found within a state machine implementation. The state implementation looks
like this:

THE _STATE NAME:
do
od;

20.7.1.3 Transitions

Transitions, found within states are denoted with a double colon and are followed by the trigger.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 212 of 265

tool set

$JAUS

: AnEventTrigger () ->
if
:: GuardFunction (paraml, etc) ->
Actionl () ;
Action2 () ;
fi;
or the trigger could be an incoming message as shown below.

: SomeMessage ? paraml, param2, ..., parmx ->

The trigger is always followed by the guards and actions (left out for brevity). Guards are always
found inside the “if” section and preceded by a double colon. Guard definitions must always

evaluate to true or false. The actions are function calls, implemented by the user.

20.7.1.4 Guards

The implementation of guards is stubbed out in the userEditableGuardsAndActions.pml file.
Guards are implemented using a #define, which will contain an expression that is evaluated at
runtime. Guard definitions can accept parameters and use any data that is within scope of the
call to the guard. An example guard implementation has been taken from the AccessControl

core service model and is shown below.
#define isControllingClient (incoming pid) (incoming pid == current client pid)

Notice that a parameter is used and evaluated against another variable. “current_client_pid” is a
global value that has been defined previously. Make sure that the definition is always included

in parentheses since logical operators can be applied to any guard function.

20.7.1.5 Actions

The implementation for actions is stubbed out in the userEditableGuardsAndActions.pml file.
Each action is implemented using an inline function that should contain the code executed for
the action. An example action implementation has been taken from the AccessControl core

service model and is shown below.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 213 of 265

tool set

¥ JAUS

/**

* Send a Reject Control message to controlling client

*/

inline Action_Send RejectControl (sender pid, paraml) {
urn_jaus Jjss core MessageSet CommandClass RejectControl rej;
rej.RejectControlRec.ResponseCode = paraml;
RejectControl[current client pid] ! sender pid, rej;

}

In this case, a message needed to be constructed and sent to the client process that was in

control of the service.

20.7.1.6 Naming Conventions

Data types are all prepended with the ID of the service definition or declared type set to which
they belong. For instance, the BasicTypes.xml included in the core services contains a
fixed_field called AuthorityCode. The name of the AuthorityCode type is converted to
urn_jaus_jss_core_MessageSet BasicTypes_AuthorityCode because the ID for the declared

type set is “urn:jaus:jss:core:MessageSet:BasicTypes”.

State names begin with the state machine name followed by the parent state’s name and end
with their own name. The code found in section 20.7.3.1 shows a useful example of some

nested states that would belong to a state machine named ReceiveFSM.

20.7.2 PROMELA Data Mapping to JSIDL
JSIDL data types and structures are mapped to PROMELA data types and structures as part of

the conversion process.

Table 7 Data Type Mapping to PROMELA

byte, short integer, integer, int Since the values of the datatypes are what is important
long integer, unsigned byte, and the unsigned types for PROMELA are not easily
unsigned short integer, implemented, a signed integer is used for all integral
unsigned integer, unsigned datatypes except for enums.

long integer

enum mtype JSIDL enums are string values that are associated with

integers. These strings can include special characters
and whitespace, which makes it difficult to convert
directly. The implementation removes all special
characters and whitespace to make it compatible with the

JTS Users Guide, Ver 2.0 Copyright 2013 Page 214 of 265

¢ JAUS

tool set

mtype.
fixed length string, variable No corresponding PROMELA type was found.
length string,
float, long float variable No corresponding PROMELA type was found.
length field
bit field No corresponding PROMELA type was found.
arrays [] Limited support exists for arrays. Most of the data used

to validate the protocol exists within a message.
Messages are defined using typedef and PROMELA
prohibits using an array within a typedef. For most
cases, this means arrays cannot be used.

As you can see there are several types that don’t have a corresponding PROMELA type. Where
possible, substitutions have been made that should not impair the function of the model. In
several cases, no substitution is possible and the data is not converted. If the protocol is using a
string, variant, or a variable length data type as the trigger for a transition or the data evaluated
in a guard, the protocol will need some other data defined and evaluated to take its place. In this
case a global variable defined in one of the user editable files should be used. This method

doesn’t require any changes to the protocol or PROMELA model, which is always preferred.

20.7.3 Special Implementation Topics

20.7.3.1 Inherited State Machines

JSIDL allows for state machines to inherit from other state machines. For the PROMELA code
generator, the inheritance chain is followed to the most base service definition. All protocols are
incorporated into existing state machines with the same name. Duplicate state definitions are
merged into a single state, so that inheritance is preserved. Transitions are kept in order and in
separate categories, so that the final state machine can evaluate the transitions in the order
mandated by the AS5684.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 215 of 265

"JAUS

tool set

20.7.3.2 Nested States

The JSIDL allows for nested states, and the JTS core services use nested states extensively.
The PROMELA documentation doesn’t mention or seem to indicate that PROMELA can support
nested states.

stm Mested States

f ParentState

@

I

ChildState

Figure 139 JSIDL Nested States

In order for the PROMELA code to compile, it is necessary to organize nested state code like
this:

// Entry Action
ReceiveFSM Receiving:
do

11 true ->
goto ReceiveFSM Receiving IMPL;
od;
// End Entry Actions
ReceiveFSM Receiving IMPL:
do

// Start Entry Actions

ReceiveFSM Receiving Ready:

do
: true ->
someEntryAction () ;
goto ReceiveFSM Receiving Ready IMPL;
od;

// End Entry Actions
ReceiveFSM Receiving Ready IMPL:
do
: someTrigger () ->
if
: someGuard () ->

someAction () ;

JTS Users Guide, Ver 2.0 Copyright 2013 Page 216 of 265

& 1AUS

tool set

goto ANOTHER STATE;
fi;
od;
od;

Note that the entry action code has been left in this example and will be discussed in the next
section. The important thing to recognize is that the highlighted double colon must only occur
once within the body of the state immediately preceding the definitions of all sub-states. This is
true because PROMELA is nondeterministic by nature and the double colon means that the
following lines are an optional path. Our deterministic implementation requires that there be only

one valid path to take.

Probably the most important thing to note about nested states is that transitions are only
implemented for states that don’t have any child states. If a parent state has transitions defined,
then those transitions are just passed on to the children. Let's consider the case where this

simple state machine is used to generate PROMELA code:

stm Mested States I

parentTrigger

(ParentState)
childTrigger
o AnotherState
arentTrigger2
. e

Figure 140 Simple State Machine with Nested States

The parent state contains two transitions and the child contains one. The actual function of this

state machine could be rewritten to exclude the parent state altogether like this:

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 217 of 265

2 JAUS

tool set

stm Promela Implementation Mested States)

parentTrigger

~,

ChildState Anotherstate

parentTrigger2

childTrigger

Figure 142 PROMELA Simplification of Nested States

The PROMELA implementation simplifies the state machine in this way. The PROMELA code
for this is shown below

ParentState:
do
¢ true->

// could add some entry actions here
goto ParentState IMPL;

od;

ParentState IMPL:

do

// add child states here
ParentState ChildState:

do
1 true->
// could add some entry actions here
goto ParentState ChildState IMPL;
od;

ParentState ChildState IMPL:
do
:: parentTrigger () ->

// unguarded transition

if
t: true—->
// no actions defined
fi;
: parentTrigger2 () ->

// unguarded transition
if

:: true->

JTS Users Guide, Ver 2.0 Copyright 2013 Page 218 of 265

tool set

& 1AUS

// no actions defined
goto AnotherState;
fi;
:: childTrigger () ->

// unguarded transition

if
:: true->
// no actions defined
fi;
od;

od;

AnotherState:

do

// do some stuff here

od;

Notice that the parent state is still represented in our implementation, but the only thing it really

does is contain the child states.

20.7.3.3 Entry Actions

In the example from the previous section, the entry actions that were generated are
implemented as separate states. This was necessary because it is syntactically invalid to insert
calls to action functions immediately following the highlighted double colon, which is where they
would need to be inserted.

20.7.3.4 Exit Actions

The exit actions for a state are simply added to the list of actions immediately preceding any
goto statement. If we add exit action doSomethingCool() to the parent or child state from the
example in section 20.7.3.1, the child state would look like this:

ReceiveFSM Receiving Ready IMPL:

do
:: someTrigger () ->
if
:: someGuard() ->
someAction () ;
doSomethingCool () ;
goto ANOTHER STATE;
fi;
od;

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 219 of 265

$JAUS

tool set

The call to doSomethingCool() would be repeated for every instance where a goto is used to exit
the state. While other implementations were considered, this was the simplest to implement and

evaluate.

20.7.3.5 Default Transitions

Default transitions are evaluated after the triggers for all other transitions have failed. The only
real difference between a default transition and the other transitions is that the default transition
doesn’t have a trigger. Using the state in the previous example, if we add a default transition to
the state it would look like this:
ReceiveFSM Receiving Ready IMPL:
do
: someTrigger () ->
if
:: someGuard() ->
someAction () ;
doSomethingCool () ;
goto ANOTHER STATE;

i true ->
if
:: guardForDefaultTransition() ->
defaultTransitionAction () ;
fi;
od;

20.7.3.6 Default States

The default state for JSIDL is a collection of transitions that are evaluated if none of the
transitions from the state evaluate to true and are taken. This allows for a set of states to have a
single definition for common transitions, if they share a default state.

Default states are implemented by copying the transitions from the default state into every state
to which the default state applies. Great care is taken to ensure that default state transitions are
only evaluated after those of the state. Section 20.7.3.9 contains a complete description of how
the transition order is maintained.

20.7.3.7 Push and Pop Transitions

Push and pop transitions are not supported in PROMELA. The implementation is a workaround
that allows for the same push and pop functionality, even though the concept isn’'t the same.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 220 of 265

& 1AUS

tool set

The goal is to be able to transition to a separate state and back again from multiple locations
within a state machine. Many different solutions were investigated, but in the end only one was a

viable option for automatic code generation.

The basic idea is to make a state specific copy of the state we are pushing to and popping from.
This will allow every state to transition to and come back from the push/pop state without
needing to specify a dynamic state to pop back to. An example implementation is below where
CALLING_STATE1 and CALLING_STATE2 both push to a PUSH_POP_STATE. Separate

copies of the PUSH_POP_STATE are created.

JSIDL Push/Pop transition:

stm JSIDL PushPop)

SomeState

AnotherState
M——

|The end state far the

Pop transition is the
same as the start state
for the Push transition.

Figure 143 JSIDL Push and Pop Transitions

Modified Push/Pop transitions to support Promela modeling:

JTS User’s Guide, Ver 2.0

Copyright 2013

Page 221 of 265

"JAUS

tool set

stm PushPopConversion)

SomeState SomeState_Emergency
Push

4 Create a separate copy

T ~._ |ofthe emergency state
for every state that will
pushtoit. The only
difference hetween the
-~ 7|copies is what state to
- pop to.

AnotherState AnotherState_Emergency

Figure 145 PROMELA Simplification of Push and Pop Transitions

Push/Pop transition implementation in PROMELA:

CALLING_ STATEL:

do

/* do some stuff here */

:: do push transition == true ->
goto CALLING STATEl PUSH POP_STATE;

od;

CALLING_STATEZ :

do

/* do some stuff here */

:: do push transition == true ->
goto CALLING STATE2 PUSH POP_STATE;

od;

CALLING STATEl PUSH POP_STATE:

do

/* do some stuff here */

:: do _pop_transition == true ->
goto CALLING STATEL;

od;

CALLING_STATE2_PUSH_POP_STATE :

do

/* do some stuff here */

:: do pop transition == true ->
goto CALLING STATEZ;

od;

20.7.3.8 Guards

Guards are implemented using #define. While a similar capability exists by using an inline function,
the inline function has no return value so the guard could not be evaluated. JSIDL allows for guards
to be composed of multiple functions connected with logical operators || (or) and && (and). In
addition, the ! (not) operator may be applied. JSIDL does not make any attempt to separate parts of
the expression, but forces it to be stored as a single string. The string is parsed and the functions are

JTS Users Guide, Ver 2.0 Copyright 2013 Page 222 of 265

tool set

& 1AUS

separated so they can be implemented. The function definitions are each stubbed out in the
userEditableGuardsAndActions.pml file.

20.7.3.9 Transitions

According to the AS5684, transitions need to be evaluated in this order:

1. Guarded transition

2. Unguarded transition

3. The Default State's guarded transition

4. The Default State's unguarded transition

5. The current State's guarded Default transition

6. The current State's unguarded Default transition
7. The Default State's guarded Default transition

8. The Default State's unguarded Default transition

The SPIN model checker which evaluates the PROMELA code is inherently nondeterministic.
This means that when multiple transition conditions would evaluate to ‘true’, then those are all
possible. JSIDL says that only the first one in the above evaluation order is possible. In an
effort to conform to the AS5684 transition evaluation order, a workaround needed to be devised.
PROMELA has an “unless” keyword that allows us to nest the evaluations and control the order
of evaluation.

: CreateEvent ? incoming pid ->

if
/**
* True if parameters are not supported.
*/
! isSupported(incoming pid) ->
// Send Reject Event Request message
RejectEventRequest (_pid, incoming pid);
fi
unless {
if
/**
* True 1f parameters are supported and the event already exists.
*/

isSupported(incoming pid) && eventExists (incoming pid) ->

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 223 of 265

tool set

¥ JAUS

// update the event
updateEvent () ;

fi

unless {

if

/**

* True if parameters are supported and the event does not already exist.
*/

isSupported(incoming pid) && ! eventExists(incoming pid) ->
// create the event

createEvent () ;

fi
H}

The above code was modified for this document but was taken from the AccessControl service.
Notice that there are three transitions and that all three are triggered by receiving the
CreateEvent message. The order of evaluation for the transitions is from the bottom up.
Basically, it says “do the first transition unless you can do the second transition unless you can
do the third transition.” So the third transition must be evaluated first because of the “unless”.
This ensures that transitions are evaluated in a controlled order. Each state maintains lists of
transitions based on the JSIDL transition type and the code is generated from a combined
transition list that follows the JSIDL spec.

20.7.3.10 Naming Overlap

Because it is almost guaranteed that there will be naming overlap between states, transitions,
actions, guards, etc., there is a need to maintain some semblance of scope when converting to
PROMELA. PROMELA code has no real concept of scope, and especially not at the level that
JSIDL uses. For instance a JSIDL Message could define a new type called Foo and then use it
internally. If all we did was to say:

typedef Foo{

}

and the next message also defined Foo internally, for PROMELA both would be global
definitions. PROMELA is very much like C when it comes to scope. You have global scope and
functional scope. C is a hit more than that, but PROMELA is not.

In order to implement these different definitions, the parent’s type is prepended to the names.
This creates unigue names for all definitions, even if they do overlap.

For instance, within the core services the type “ResponseCode” is defined more than once. In
the CommandClass it is defined within the “RejectElementRequest” message and also within the
“ConfirmControl” message. This is not a problem with the JSIDL since the definitions are
internal to the messages. The same thing is not possible for PROMELA, so the two types are
renamed to

JTS Users Guide, Ver 2.0 Copyright 2013 Page 224 of 265

tool set

& 1AUS

urn_jaus_jss_core_MessageSet_CommandClass_RejectElementRequest_ResponseCode and
urn_jaus_jss_core_MessageSet_CommandClass_ConfirmControl_ResponseCode, respectively.
Notice that the message itself contains the ID for the DeclaredTypeSet to which it belongs. This
eliminates the potential for naming overlap between type sets.

20.7.3.11 Action Function Overloading

PROMELA doesn’t allow for function overloading but the JSIDL does. Many instances were
found where a single function was given multiple types of parameters depending on the
situation. In order to bypass this issue, the trigger for the transition is prepended to the action
name. In addition actions where the Transport service is used to send data includes the string
“Send_Action”, while regular actions only have “Action”. These maodifications allow functions to
be overloaded because the function names are no longer identical, but are unique.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 225 of 265

&1Aus

tool set

21 Compact JSIDL and Eclipse Plug-in

Compact JSIDL (CJSIDL) is a grammar that provides C-like syntax for a user developing JAUS
compliant service interfaces. The CJSIDL Eclipse Plug-in provides an editor for CJSIDL, access

to JTS code and document generators, and conversion to and from JSIDL.

TABLE OF CONTENTS FOR CJSIDL

21.2 OVERVIEW 228
21.3 ENVIRONMENT 229
21.3.1 INSTALLATION 229
21.4 CJSIDL GRAMMAR 229
21.4.1 INTERPRETATIONS AND COMMENTS 230
21.4.2 DECLARED CONSTANT SET 230
21.4.2.1 Constant Definition 231
21.4.3 DECLARED TYPE SET 231
21.4.3.1 Type Definition 231
21.4.3.1.1 Optional Types 231
21.4.3.1.2 Message Definition 232
21.4.3.1.3 Array Definition 233
21.4.3.1.4 Record Definition 233
21.4.3.1.5 List Definition 233
21.4.3.1.6 Variant Definition 234
21.4.3.1.7 Sequence Definition 234
21.4.3.1.8 Fixed Field Definition 234
21.4.3.1.8.1 Scaled range: 235
21.4.3.1.8.2 Value set definition 235
21.4.3.1.8.3 Value spec 235
21.4.3.1.8.4 Value range 235

JTS Users Guide, Ver 2.0 Copyright 2013 Page 226 of 265

tool set

& 1AUS

21.4.3.1.9

Variable Field Definition

21.4.3.1.10 Bitfield Definition

21.4.3.1.11 Fixed Length String Definition

21.4.3.1.12 Variable Length String Definition

21.4.3.1.13 Variable Length Field Definition

21.4.3.1.14 Variable Format Field Definition

21.4.3.1.15 Header Definition and Reference

21.4.3.1.16 Body Definition

21.4.3.1.17 Footer Definition

21.4.3.2

Type Reference

21.4.4 SERVICE DEFINITION

21441

21.4.42

21.4.4.3

21.4.4.4

21.4.45

214451

21.4.45.2

21.445.3

214454

21.4.45.5

21.445.6

References
Declared Constant Set References
Declared Type Set References
Events
Protocol Behavior

Actions

Guards

Transitions

State

Default State

State Machine

215 ECLIPSE PLUG-IN

21.5.1 EDITOR

2152 JTS

21521

MENU

Generate Code

236
236
237
237
237
238
238
239
239

240

240

241

241

242

242

242

243

243

244

245

246

246

247

248

249

249

JTS User’s Guide, Ver 2.0 Copyright 2013

Page 227 of 265

&1Aus

tool set

21.5.2.2 Generate Documents 250
21.5.2.3 Export to JSIDL 251
21.5.3 NEW PROJECT AND FILE WIZARDS 251
21.5.3.1 New Empty Project 252
21.5.3.2 New Stub Project 253
21.5.3.3 New Imported Project 254
21.5.3.4 New File 255
21.5.4 TROUBLESHOOTING 256
21.5.4.1 Link Resolution 256
21.5.4.2 Errors within the editor 257
21.5.4.3 Errors converting JSIDL 257
21.5.4.4 Errors with generating code, documents, or JSIDL 257
21.6 CJSIDL INTEGRATION WITH JTS 258
21.6.1 IMPORT 258
21.6.2 EXPORT 258
221 CODE GENERATOR 260
22.2 DOCUMENT GENERATOR 260
22.3 AUTOMATED TESTING FRAMEWORK 262
23.1 SIMPLE NUMERIC TYPE 263
23.2 FIELD FORMATS 263
23.3 UNITS 263

21.1 Overview

This section will provide a reference for CJSIDL syntax and a guide to using the CJSIDL Eclipse

Plug-in.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 228 of 265

¢ JAUS

tool set

21.2 Environment

For information on the environment for the source code, please reference the JTS Developer’'s
Manual. When running the distributed binary of the plugin, all that is required is Eclipse 3.6 with
the Xtext 1.0.2°. The JTS plugin has not been tested with versions of Eclipse later than 3.6.

21.2.1 Installation
To install the plugin, download the CjsidlEclipsePlugin.zip archive, and extract the files into the
eclipse/ directory of your Eclipse installation. All of the necessary plugin files will be installed in

the eclipse/plugins/ directory automatically.

After extracting the files, the JTS_ COMMON_PATH system variable needs to be set up. Follow
the instructions in section 4.1.8. with the Commons folder being located in eclipse/plugins/

org.jts.eclipse.data_1.0/templates/Common/.

Running the generated code from the Eclipse plug-in requires the same tools as JTS — please

see section 4.1.2 for installation instructions for Java, Python, and SCons.

21.3 CJSIDL Grammar

The CJSIDL grammar follows the JSIDL 1.1 specification.

In this section regular expressions are used to explain the syntax of the grammar. With one
marked exception, all capitalized text between angle brackets is text that is defined by the user.
An explanation of what that text should contain will follow the example. Any other text and

punctuation are keywords and expected markups.

A CJSIDL file is identified by the extension .csd or .cjsidl. Each file contains exactly one service
definition, a declared type set, or a declared constant set. A service set may contain type and

constant sets, but the file may only have one URI.
Unless otherwise noted, assume that all structures are order dependent.

Throughout the rest of this section, the following syntax will be used to describe the CJSIDL

grammar elements:

> http://www.eclipse.org/Xtext/download.html

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 229 of 265

tool set

¥ JAUS

<> - used to denote a user defined element

Bold formatting — used for keywords, and required format characters in the grammar

* - indicates that there can be zero or more elements.

+ - indicates that there can be one or more elements.

? - indicates that there can be zero or one instances of an element.

21.3.1 Interpretations and Comments

In the following examples there will be references to optional <INTERPRETATIONS>. These are
to be distinguished from regular single and multi line comments and are attached to the specific
JSIDL object represented on the line immediately below the interpretation. Table 8 is a list of

available comment syntax and coloring. Keep in mind that while CJSIDL supports comments,

the comments are not included when converting to JSIDL, but interpretations are.

Table 8 CJSIDL Comments

Syntax Description Syntax highlighting
/ Single line comment Green

A Multi line comment Green

... ## Interpretation Blue

21.3.2 Declared Constant Set

The basic syntax for a declared const set is:

constants <NAME> (id = <URI>, version = <VERSION>) {
<DECLARED CONSTANT SET REF>*

<CONSTANTS>*

}

where the ID is the name of the declared constant set, the URI is a valid URI such as
“urn.jts.Ping”, and the version number is a decimal. Having a declared constant set reference is

optional, and as many can be imported as necessary, but they must all be at the top of the file.
Defining a constant is also optional, and as many can be defined in the set as needed.

For the syntax of a constant set reference, see section 21.3.4.2

JTS Users Guide, Ver 2.0 Copyright 2013 Page 230 of 265

¢ JAUS

tool set

21.3.2.1 Constant Definition

A constant is a simple numeric type with an ID, a value, and a unit type. The syntax is:

<INTERPRETATION>?<numeric type> <NAME> = <value> <units>;

A list of numeric types and units can be found in Appendix B — Available Types and Units.

The value must be an integer or decimal value.

21.3.3 Declared Type Set

The basic syntax for a declared type set is:

typeset <NAME> (id = <URI>, version = <VERSION>) {
<DECLARED CONST SET REFS>*

<DECLARED TYPE SET REFS>*

<TYPE DEFS>*

<TYPE REFERENCE>*

}

where the ID is the name of the declared constant set, the URI is a valid URI such as
“urn.jts.Ping”, and the version number is a decimal. A declared type set may have any number
of references to declared constant sets or other declared type sets within the project. There can

also be any number of type definitions and references to existing types as well.

The CJSIDL language is order dependent, with all declared constant set references needing to
be defined first, followed by all declared type set references, followed by all type definitions, and

ending with all type references.
For the syntax of a constant set reference, see section 21.3.4.2.

For the syntax of a type set reference, see section 21.3.4.3.

21.3.3.1 Type Definition

A type definition is the declaration of a message, array, record, list, variant, sequence, fixed field,
variable field, bitfield, fixed length string, variable length string, variable length field, variable
format field, header, body, or footer. Each of these has a unique declaration as defined in the

following sections.

21.3.3.1.1 Optional Types

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 231 of 265

tool set

/ JAUS

To define a type as being optional, use the keyword ‘optional’ at the start of the type definition,
and after the interpretation.

For example:

Comments for recExmpl##

optional record recExmpl{..};

optional field uint8 fieldExmpl one <0, 7> round;

Types that can use the optional keyword are:

Fixed length string Variable length field Variant
Variable length string Variable format field Sequence
Fixed field Bitfield Record
Variable field List Array

21.3.3.1.2 Message Definition

The syntax for a message is:

message <MESSAGE CODE> <NAME>{
description “STRING”;
<HEADER>?

<BODY>

<FOOTER>?

}

The message code is a hexadecimal value starting with “Ox” and must be 4 hex digits in length,

and the NAME is the name of the message.
The description is a string describing the intended use of the message.

The description, header, body, and footer definitions are order independent and only the body is

required. The header and footer are optional.

For details on the syntax of the header, body, and footer see sections 21.3.3.1.15, 21.3.3.1.16,
and 21.3.3.1.17 respectively.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 232 of 265

¢ JAUS

tool set

Additionally, the keyword ‘command’ may be used at the start of the definition to indicate the

message is a command:

command message <MESSAGE CODE> <NAME>({..}

21.3.3.1.3 Array Definition

The syntax for an array is:

<INTERPRETATION>?
<TYPE REFERENCE> <NAME>[SIZE];

The type reference is the name of an existing fixed field, variable length string, fixed length
string, bitfield, variable format field, variable field, or variable length field that has already been

defined. A reference to any other type will create an error.

The NAME is the name of the array, and the size is defined much like Java. For example:

create a 5 element array of type ExampleStringType
ExampleStringType stringArray[5];

21.3.3.1.4 Record Definition

The syntax for a record is:

<INTERPRETATION>?

record <NAME>{

<TYPE DEFINITION or REFERENCE>+
}

A record may also be marked as optional by adding the keyword ‘optional’ in front of the

definition.

A record must contain a minimum of one type definition or reference. The type can only be an
array, fixed field, variable field, bitfield, fixed length string, variable length string, variable length

field, or variable format field. The use of any other type inside a record will cause an error.

For details on the syntax of a type reference, see section 21.3.3.2.

21.3.3.1.5 List Definition

The syntax for a list is:

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 233 of 265

tool set

/ JAUS

<INTERPRETATION>?

list <NAME> <COUNT INTERPRETATION>? [<MIN>, <MAX>] {
<CONTAINER TYPE>

}

where NAME is the name of the list, and INTERPRETATION is an optional comment. MIN and
MAX are either references to constants or a numeric literal and bound the size of the list.

The CONTAINER TYPE is a reference or definition of a record, list, variant, or sequence.

21.3.3.1.6 Variant Definition

The syntax for a variant is:

<INTERPRETATION>?

variant <NAME> <COUNT INTERPRETATION>? [<MIN>, <MAX>]{
<VTAGS>*

}

where a VTAG is defined as:

vtag: <CONTAINER TYPE>

The CONTAINER TYPE is a either a reference or definition of a record, list, variant, or

sequence.

21.3.3.1.7 Sequence Definition

The syntax for a sequence is:

<INTERPRETATION>?
sequence <NAME> ({
<CONTAINER TYPE>+
}

The CONTAINER TYPE is a either a reference or definition of a record, list, variant, or
sequence. This type is used to store an ordered list of container types. The order is determined

by the order of definition within the sequence.

21.3.3.1.8 Fixed Field Definition

The syntax for a fixed field is:

JTS Users Guide, Ver 2.0 Copyright 2013 Page 234 of 265

¢ JAUS

tool set

<INTERPRETATION>?
field <NUMERIC TYPE> <NAME> <UNIT> <RANGE>?;

A list of NUMERIC TYPEs and UNITs can be found in Appendix B — Available Types and Units.

RANGE is optional, and is either a scaled range definition, value set definition, or value range.

21.3.3.1.8.1 Scaled range:

<INTERPRETATION>?
< <LOWER LIMIT>, <UPPER LIMIT> > <FUNCTION>

FUNCTION is ‘floor, ‘ceiling’, or ‘round’. Note that for this example, the outer set of angular
brackets is part of the language.

For example:

a scaled range
<0, 10> floor

21.3.3.1.8.2 Value set definition

{<VALUE>+;} offset?

where VALUE is a value spec or value range, and at least one is defined. If using both value
spec’s and value range’s, they are order independent in the list. The optional “offset” keyword

determines if the offset_to_lower_limit flag is set in the corresponding JSIDL.

21.3.3.1.8.3 Value spec

<INTERPRETATION>?
<STRING> = <INT>

where STRING is any string and INT is an integer.

For example:

a value found in a fixed field definition

“SOME STRING VALUE” = 5;

21.3.3.1.8.4 Value range

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 235 of 265

¥ JAUS

tool set

<INTERPRETATION>?
(<LOWER LIMIT>, <UPPER LIMIT>)

For a value range, either parentheses or square brackets can be used in place of the
parentheses above, where a rounded parenthesis is exclusive, and a square bracket is inclusive.

For example:

A range from 0 to 5, excluding 0 and 5S##
(0, 5)

A range from 0 to 5, excluding 0 and including 5##
(0, 51

A range from 0 to 5, including 0 and excluding 5##
[O, 5)

A range from 0 to 5, including O and 5
[0, 51

21.3.3.1.9 Variable Field Definition

The syntax for a variable field is:

<INTERPRETATION>?
variable field <NAME> {
<TAGS>+

};

A variable field contains at least one tag, which is defined as

tag <INT> : <NAME> <NUMERIC TYPE> <UNIT> <VALUE SET/SCALED RANGE>?;

The INT can be an integer or a reference to a defined constant. A list of numeric types and units

can be found in Appendix B — Available Types and Units.

Additionally, the tag can include an optional value set definition or scaled range definition after

UNIT. The syntax for these can be found in sections 21.3.3.1.8.2 and 21.3.3.1.8.3, respectively.

21.3.3.1.10Bitfield Definition

JTS Users Guide, Ver 2.0 Copyright 2013 Page 236 of 265

& 1AUS

tool set

The syntax for a bitfield is:

<INTERPRETATION>?

bit field <TYPE> <NAME>{
<SUBFIELD>*

}

In a bitfield, the TYPE must be a uint8, uintl6, uint32, or uint64.

The subfield is defined as:

<INTERPRETATION>?
<NAME> [<INT>: <INT>] <VALUE RANGE> ;

The INT values are the start and end bit positions that this subfield occupies within the bitfield.
For the syntax of the VALUE RANGE see section 21.3.3.1.8.4.

21.3.3.1.11 Fixed Length String Definition

The syntax for a fixed length string is:

<INTERPRETATION>?
string <NAME> [<INT>];

The INT value determines the size of the string.

21.3.3.1.12 Variable Length String Definition

The syntax for a variable length string is:

<INTERPRETATION>?
vstring <NAME> [<INT>, <INT>];

The INT values determine the minimum and maximum size that the string will have.

21.3.3.1.13 Variable Length Field Definition

The syntax for a variable length field is:

<INTERPRETATION>?

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 237 of 265

tool set

¥ JAUS

vfield <FIELD FORMAT> <NAME>
<COUNT INTERPRETATION>? [<MIN>, <MAX>]1? ;

The count and its interpretation are optional. If a minimum count is specified, the maximum

count remains optional.

21.3.3.1.14 Variable Format Field Definition

The syntax for a variable format field is:

<INTERPRETATION>?

variable format field <NAME> ({
<COUNT INTERPRETATION>?

<INT TYPE> tag <VALUE RANGE>;
<FORMAT ENUM> +

}

where INT TYPE is uint8, uintl6, or uint32, and the syntax for a VALUE RANGE can be found in
section 21.3.3.1.8.4. The range must fit within the INT TYPE that is specified. In addition, the

range must encompass all the tagged enum values that follow in the definition.

FORMAT ENUM can be defined as:

tag <INT> : <FIELD FORMAT or STRING>

INT can also be a constant reference, and a list of FIELD FORMATSs can be found in Appendix B

— Available Types and Units.

21.3.3.1.15 Header Definition and Reference

The syntax for a header is:

<INTERPRETATION>?
header{

<CONTAINER TYPE>?
}

The CONTAINER TYPE is a either a reference or definition of a record, list, variant, or sequence

A reference to an existing header is defined as:

<INTERPRETATION>?

JTS Users Guide, Ver 2.0 Copyright 2013 Page 238 of 265

¢ JAUS

tool set

header <REF> <NAME>;

REF is the name of a header that has already been defined, and the NAME is the identifier of

the header reference.

21.3.3.1.16 Body Definition

The syntax for a body is:

<INTERPRETATION>?
body {

<CONTAINER TYPE>?
}

The CONTAINER TYPE is a either a reference or definition of a record, list, variant, or sequence

A reference to an existing body is defined as:

<INTERPRETATION>?
body <REF> <NAME>;

REF is the name of a body that has already been defined, and the NAME is the identifier of the

body reference.

21.3.3.1.17 Footer Definition

The syntax for a footer is:

<INTERPRETATION>?
footer(

<CONTAINER TYPE>?
}

The CONTAINER TYPE is a either a reference or definition of a record, list, variant, or sequence

A reference to an existing footer is defined as:

<INTERPRETATION>?
footer <REF> <NAME>;

REF is the name of a header that has already been defined, and the NAME is the identifier of

the footer reference.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 239 of 265

tool set

¥ JAUS

21.3.3.2 Type Reference

A type reference is simply an instance of an already defined type. The syntax is

<INTERPRETATION>?
<TYPE NAME> <NAME>;

where TYPE NAME is the name of the type being referenced, and NAME is the name of the new
type reference.

21.3.4 Service Definition

The basic structure for a service definition is:

service <NAME> (id = <URI>, version = <VERSION>) {
description = “STRING”;
assumptions = “STRING”;
<REFERENCES>?
<CONSTANT SET>?
<TYPE SET>?

<INTERPRETATION>?
messages {
<INTERPRETATION>?
input{
<MESSAGE>*
}
<INTERPRETATION>?
output{
<MESSAGE>*
}
}
<INTERPRETATION>?
eventset({
<EVENT>*
}
<INTERPRETATION>?

protocol {

<STATE MACHINES>+

JTS Users Guide, Ver 2.0 Copyright 2013 Page 240 of 265

¢ JAUS

tool set

}

The description and assumptions must be enclosed in double quotes and followed by a

semicolon.

Inside the message set, no MESSAGE has to be defined, however CJSIDL requires that the

messages {...} structure exist. For details on the syntax for a MESSAGE, see section 21.3.3.1.1.

The event set structure is also required, even if no EVENT is defined. For details on the syntax
for an EVENT, see section 21.3.4.4.

21.34.1 References

Service definitions can reference other existing service definitions within the project.

references{
inherits from <INTERPRETATION>? import <URI> as <NAME>;
client of <INTERPRETATION>? import <URI> as <NAME>;

}

Both inherits_from and client_of are optional, and there can be as many clients as necessary.

Only one service can be inherited.

For both imports, the URI must be the URI of a service definition located within the existing
project. The NAME is the id that will be used to reference objects within the service definition

throughout the file.

21.3.4.2 Declared Constant Set References
The declared constant set reference is essentially the import of a constant set located in the

project. They syntax is:

<INTERPRETATION>?

using constants <URI> as <NAME>;

where <URI> is the URI of an existing constant set within the project. If the URI belongs to a

type set, a service set, or is otherwise invalid the editor will mark the line with an error.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 241 of 265

tool set

¥ JAUS

21.3.4.3 Declared Type Set References
The declared type set reference is essentially the import of a type set located in the project.

They syntax is very similar to the declared constant set reference:

<INTERPRETATION>?
using typeset <URI> as <NAME>;

where <URI> is the URI of an existing type set within the project. If the URI belongs to a

constant set, a service set, or is otherwise invalid the editor will mark the line with an error.

21.34.4 Events

The syntax for an event is very similar to that of a message.

<INTERPRETATION>?
event <NAME> {
description = “STRING”;
<HEADER>?
<BODY>
<FOOTER>?
}

HEADER, BODY, and FOOTER are order independent, and only the BODY is required. They

can be references or definitions, and the syntax for them can be found in sections

For details on the syntax of the header, body, and footer see sections 21.3.3.1.15, 21.3.3.1.16,
and 21.3.3.1.17 respectively.

To reference an existing event inside the eventset, use the following syntax:

<INTERPRETATION>?
eventset <REFERENCE> <NAME>;

REFERENCE is the name of an existing event, or a scoped name of an event that exists in an
inherited service definition (ex: serviceDefA.serviceDefB.eventName). NAME is the id of this

reference.

21.3.4.5 Protocol Behavior
The protocol behavior in CJSIDL is a collection of state machines and states built with

transitions, guards, and actions.

The overall syntax for the protocol behavior is:

JTS Users Guide, Ver 2.0 Copyright 2013 Page 242 of 265

¢ JAUS

tool set

<INTERPRETATION>?
<STATELESS>? protocol {
<STATE MACHINE>+

}

where STATELESS is the optional keyword ‘stateless’, and STATE MACHINE is the definition

of at least one state machine as described in section 21.3.4.5.6.

21.3.4.5.1 Actions

An action is defined as:

<INTERPRETATION>?
<ID | URI> (<PARAMETER>*) ;

where an ID or a URI can be used to identify the action, and zero or more PARAMETERS are
used. Parameters are separated by commas and are either a reference to an available transition

parameter, or a string.

21.3.4.5.2 Guards

A guard is defined as:

<INTERPRETATION>?
guard : <FUNCTION> <EQUIV> <FUNCTION>;

EQUIV is “=” or “I=". The functions are user defined and can contain parameters that were

passed into the transition that contains this guard or the parameter can be a string.

A guard can also be defined as:

<INTERPRETATION>?

guard : <FUNCTION> <<LOGICAL OPERATOR> <FUNCTION>>*;

where LOGICAL OPERATOR>is && or ||.

In both cases, FUNCTION is defined as

<NAME> (<PARAM>+)

where PARAMs are separated by commas, and a ‘" can be added to the front of the FUNCTION

as logical negation.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 243 of 265

tool set

¥ JAUS

For example:

guard : exampleFunc(“string”) = anotherFunc(“string2”) ;
or

guard : exampleFunc(“string”) || 'anotherFunc(“string2”) ;

21.3.4.5.3 Transitions

There are four kinds of transitions available: internal, simple, push, and pop. They all have
similar syntax in CJSIDL.

<INTERPRETATION>?
<TYPE> transition <NAME> (<PARAM>*) {
<GUARD>?
<ACTIONS>
<SEND ACTIONS>?
<DESTINATION>

}

The TYPE is the keyword internal, simple, push, or pop. The syntax for a GUARD can be found
in section 21.3.4.5.2.

SEND ACTIONS and ACTIONS are order independent. Both are lists of actions, as defined in
section 21.3.4.5.1. The syntax for a SEND ACTION list is

send actions{

<ACTION>*
}

The ACTIONS syntax is:

actions{

<ACTION>*
}

Multiple PARAMs are separated by commas. The PARAM can be a reference to a defined type,

or an integer with an ID. Valid integers are uint8, uint16, uint32, and uint64.

For example:

JTS Users Guide, Ver 2.0 Copyright 2013 Page 244 of 265

¢ JAUS

tool set

(recExample rec, ## ref comment ## strExample str, uint8 num)

DESTINATIONS vary based on the type of transition. See Table 9 CJSIDL Transition

Destination Syntax for details on the correct syntax for each transition.

Table 9 CJSIDL Transition Destination Syntax

Transition Type DESTINATION syntax
Internal <INTERPRETATION>?
Simple <INTERPRETATION>?

next <STATE REF>;

Push <INTERPRETATION>?

popto next <STATE REF>;

Pop <INTERPRETATION>?
secondary <TRANSITION REF> (<PARAM>+) ;

Note that the keyword ‘next’ is interchangeable with the keyword ‘->’. PARAM is defined
identically to the PARAM in the transition definition above.

STATE REF is a reference to another state in the state machine. It will be scoped to ensure that

the correct state is called (ex: StateA.StateB.StateC, where States A, B, and C are nested).

A TRANSITION REF is a reference to another transition in the state that contains the push
transition that originally entered the state. For full details on the functionality of push and pop
transitions, see [5684] AS5684.

21.3.4.5.4 State

The syntax for a state is:

<INTERPRETATION>?
state <NAME>{

<ENTRY ACTIONS>?

<EXIT ACTIONS>?
<TRANSITION>*

<DEFAULT TRANSITIONS>*
<DEFAULT STATE>?

<SUB STATE>*

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 245 of 265

tool set

/ JAUS

21.3.4.5.5 Default State
The DEFAULT STATE is defined as:

<INTERPRETATION>?

state default({
<TRANSITION>*
<DEFAULT TRANSITION>*

}

The DEFAULT TRANSITION is defined exactly like a normal transition, except with the keyword

‘default’ between the interpretation and the transition type. For example:

Simple transition example
default simple transition {
actions{}

-> NextStateName.SubStateName;

21.3.4.5.6 State Machine

The syntax for a state machine is:

<INTERPRETATION>?

state machine <NAME> (<START STATE>) {
<DEFAULT STATE>?

<STATE>*

}

The START STATE is the reference to the first state the state machine will be in. This reference

will be scoped if the state is nested (ex: StateA.StateB.StateC).
The syntax for a STATE can be found in section 21.3.4.5.4.

The syntax for a DEFAULT STATE can be found in section 21.3.4.5.5.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 246 of 265

tool set

$JAUS

21.4 Eclipse Plug-in

The CJSIDL Eclipse plug-in can be broken down into three components — the JTS menu, the
new project and file wizard, and the editor. The editor is the core of the plug-in, the JTS menu
provides the JTS functionality and the ability to export CJSIDL to JSIDL, and the wizards provide
a convenient GUI to create new CJSIDL projects and files, or import a project from JSIDL.

Figure 146 shows an instance of Eclipse running the CJSIDL plug-in. In the top bar, the JTS
menu is visible, and the basic syntax highlighting of the .csd file is visible. On the left side of the

window is the Package Explorer, which shows the projects that are active in the workspace.

& Java - Core6/AccessControl. csd - Eclipse SDK
File Edit MNavigate Search Project JTS Run Window Help

M il (ST B -O-Q HEG @ £ & Java |
AR S
[packag & ~ O] = AccessControlcsd 2 - 74 =~ O/ & outline =2 =0
=2EE v -service AccessControl (id = urn.j. s & |3,
= Coret = description "The Access Contri— = = urn.jaus.jss.core. &
+# Ping This service maintains two va i= "The Access C¢
assumptions "Messages may be o = eyents
= references | = ¢core
inherits_frem import urn. i= RequestContre
} = ReleaseControl
s typeset Types | i= QueryControl
using typeset urn.jaus.]s: I= QueryAuthorit
1 : = Ok i eklsido :
4 | ETN >
[Problems 2 . @ Javadoc|[E Declaration| 4" Search| €] Error Log ¥ =0
0 errors, 2 warnings, 0 others
Description Resource Path Lo
= & Warnings (2 items)
& Internal transition name should be an event urn_jts_Pin... /Ping line
& Internal transition name should be an event urn_jts_Pin... /Ping line
¢ 3| | E
i 0® Writable Insert 4:

Figure 146: CJSIDL Eclipse Plug-in

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 247 of 265

tool set

&1Aus

21.4.1 Editor

The CJSIDL is a full editor that has been generated from the CJSIDL grammar through XText. It
provides syntax highlighting, formatting, auto completion, and validation. Figure 147 shows an

instance of the editor that displays all of the comment styles and syntax highlighting.

Also note that the editor is outlined with a light blue bar — this indicates that the editor is
selected. If the Package Explorer, Outline, or another window is selected within Eclipse, it will be
outlined in the blue bar. When using the JTS menu it is important that either the editor or a
project inside the Package Explorer is selected. That is how the menu knows which project to
convert to JSIDL.

s= urn_jts_PingClient.c = BasicTypes.csd 5| AccessControl.esd 52 0 2 =g
= eventset | -
= event Timedout | 0
description "Occurs when access is not re-acquired g
= header Header |
// The Header and Footer are optional.
}
= body Body |
}
= footer Footer |
/ *E
* They are also order independant.
*/

1
'

= protocol |
= ##extending ReceiveFsSM of base service (transport)##

state_machine events.transport.ReceiveF5M (start Receivi
= ##redefine state 1In order to extend##

state Receiving |
* ##redefine state in order to extend##
initial state Eeady |

| €

[~
|

Figure 147 CJSIDL Editor Window

To access the auto complete feature, press ctrl + space while in the editor. This will pull up a list

of objects that can be referenced.

To activate the white space formatting, either right click in the editor and select “Format”, or

while the editor is selected press ctrl+shift+s.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 248 of 265

& 1AUS

tool set

21.4.2 JTS Menu
The JTS Menu located at the in the toolbar along with File, Edit, Source, etc. is the location of all
the JTS functionality included with the plug-in. The JTS code generator, document generator,

and the ability to export to JSIDL are all found in this menu, as shown in Figure 148.

File Edit Navigate Search Project Run Window Help

=4 - RSP YW Export to JSIDL... 5 - % o~

Generate Document...

= E ,.E = N
f# Package Explorer i SIUE o arate Code.. _]ts_PlngSt?ruer.c |
== - servricerrngorrenrcrid = urn.jts. Pl
1= Core6 description "This service broac
#52 Ping assumptions "Messages may not &

= references |
Figure 148: Eclipse Plug-in JTS Menu

The code and document generators behave exactly as in JTS — this section provides information
on the Eclipse plug-in GUI provided. For detailed information on utilizing generated code and the

functionality of the generators, please see sections 4, 17, and 18.

Please note that all three functionalities will use all of the files located in the selected project, as
the plug-in is project based. If a file should be excluded from the task, it should first be removed

from the project.

21.4.2.1 Generate Code

The code generator included in the CJSIDL plug-in is the same generator used for JTS, and
produces the same code. For details on how to modify the generated code and set up the
environment, please refer to sections 4.1.8, 4.1.9, 7.3, and 9 (excluding information on using the
JTS GUI).

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 249 of 265

tool set

&1Aus

Generate Code...

Component Name: Component ID:
[| |
Output Path:
| | [Browse...]
Select Code Type:

C++

Java [| Generate Eclipse Project

ce

[Generate... l [Cancel

Figure 149: CJSIDL Plug-in Code Generator

When choosing a component name, use a name that will make a valid C++ or Java class name.

For the component ID, an integer between 1 and 256 must be used.

The output path must be a valid folder that exists. Because of limitations in a third party tool

used by the generator, the output path cannot contain any spaces.
If running Eclipse on Windows, code in C++, Java, or C# may be generated.

If running Eclipse on a Linux system, code in C++ or Java may be generated. C# code may be

generated as well, but is untested.

For any generated language, selecting Generate Eclipse Project will compile the generated code
and import the generated project as an Eclipse project. If the project is in Java, then Eclipse will
apply the appropriate Java functionality to the project and generate an Ant script to call SCons.
Otherwise, it is up to the user to ensure that the correct Eclipse plug-in is available for
development in C++ or C#.

In order to compile the generated code Eclipse needs to be able to find the SCons program. The
first time an Eclipse project is generated a pop-up will appear asking for the location of the
SCons program. By default it is located in the same directory as the Python installation, in the

folder Scripts/. On Windows the file needed is scons.bat.

21.4.2.2 Generate Documents

Like the code generator, the document generator is the same generator used by JTS. For full
details of the output and use of the generated files, refer to section 18. This includes details on
the Custom Style Sheet path.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 250 of 265

& 1AUS

tool set

3enerate Documentation. .. &

Component Namme:

Output Path:

| | lBrowse...]
Custom Style Sheet Path:
|plugin5,f0rg.jts.eclipse.data_l L/ resources /dociGenerator / | l Browse...]
Select Document Type: Delete intermediate files:
Word Docum T
Linear HTMI False Generate...] l Cancel]
Framed HT}

Figure 150: CJSIDL Plug-in Document Generator

The document generator requires the name of the component, and the output path for the files.
The name should be the same name that would be used for the code generator. The output path
must be a folder and must exist. Given the number of files generated, it is recommended that the

output path be a dedicated documentation folder.

21.4.2.3 Export to JSIDL
The window for exporting to JSIDL is very simple. All that is required is a valid output path, and

for a valid project to be selected. A valid output path is one that exists and contains no spaces.

Export to JSIDL... g|

Export to folder:

| | ’Browse...l

’Export...] ’Cancel]

Figure 151: CJSIDL Plug-in Export to JSIDL

21.4.3 New Project and File Wizards
In order to create a new file or project for CJSIDL, either select File -> New -> Other... from the
top menu of Eclipse or press ctrl+n. In the window that appears, there will be a folder labeled

CJSIDL as shown in Figure 152. Select the desired wizard, and click next.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 251 of 265

2 JAUS

tool set

= New

Select a wizard —

Wizards:

[¢] Source File
5 Source Folder

== CI8IDL
®
® CISIDL File —
% C3SIDL Imported 1SIDL Project
$# C3SIDL Stub Project

== CWS
[CVS Repository Location
& projects from CvS

| >

| £

@

Figure 152: CJSIDL New Window

21.4.3.1 New Empty Project

When creating a new empty project, only the name of the new project is required. The browse
button is available to review the existing project names, but the new project name must be
unique. Click Finish to create the project.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 252 of 265

S 1AUS

tool set

CISIDL Project
@ File container must be specified
Project folder name: | lBrowse...

Figure 153: CJSIDL New Empty Project Wizard

21.4.3.2 New Stub Project

A new stub project will contain one bare-bones file with the given information. A new project
name must be provided, and a file name. As shown in Figure 154 a service definition, constant
set, or type set may be created. Clicking Finish will create the new project and file, then open the
file in the editor.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 253 of 265

2 JAUS

tool set

CJISIDL File

This wizard creates a new CISIDL project with a file ending with *.csd.

Project folder name: || | [Browse...]

File name: |new_ﬁle.csd |

Select Set Type:

Service Definition

Type Set

Constant Set
Service name: |ExampIeName |
Version number: |0.0 |
Service id: |example.uri |

@ Mext = [Finish l l Cancel

Figure 154: CJSIDL New Stub Project Wizard

21.4.3.3 New Imported Project
The only way to import existing JSIDL is to create a new project. The project name must be
unique. The imported JSIDL must be a folder, and all JSIDL inside the folder and subfolders will

be imported into the project.

Clicking Finish will create the new project, convert the JSIDL to CJSIDL and open the CJSIDL

files in the editor.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 254 of 265

tool set

& 1AUS

CISIDL Project

@ File container must be specified

Project folder name: | | lBrowse...]

Import 15101 document:

| ’Browse...]

@

Figure 155: CJSIDL New Imported Project Wizard

Note: There is a known issue when importing JSIDL that includes cross-file references (such as
using inherits_from and client_of references, or links to constant or reference sets). The edi-
tor will not be able to immediately resolve those links, rendering the files difficult to edit. The
work-around it to close Eclipse and restart it. This will initialize the files correctly.

To confirm that this is the problem — open the Error Log view (Window -> Show View -> Error
Log) and the most recent error should be “org.eclipse.xtext.build.erimpl.XtextBuilder —
Passed org.eclipse.xtext.resource.lResourceDescriptions is not of type
org.eclipse.xtext.resource.impl.ResourceSetBasedResourceDescriptions”

21434 New File

The new file wizard will create a new stub file, exactly like the one created by the new stub
project wizard. The stub file is a bare-bones file filled out with the given information. The project
name is automatically filled out with the current selected project, but can be changed by
selecting Browse and choosing a different project. As shown in Figure 156 a service definition,
constant set, or type set may be created. Clicking Finish will create the new project and file, then

open the file in the editor.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 255 of 265

&1Aus

tool set

CJSIDL File

This wizard creates a new CISIDL file ending with *.csed.

Project: |/Ping | ’Browse...]

File name: |new_ﬁ|e «£sd |

Select Set Type:

Service Definition
Type Set
Constant Set

Service name: |ExampIeName |

Version number: |0.0 |

Service id: |example ki

[Finish] [Cancel

Figure 156: CJSIDL New File Wizard

21.4.4 Troubleshooting

There are a few known issues in the plug in. These issues are related to the conversion of JSIDL

and CJSIDL, and accessing the code and document generators.

21.4.4.1 Link Resolution
If the plug in is not resolving a link (to an external file or internally to the file) there are a few

steps that can be taken:

1. Ensure that the link is valid. Does a file with that URI exist in the project? Does
that type exist in the correct scope? Note that the editor can not resolve links to
files outside of a project.

2. If the link appears to be valid, open the error log:

= Select the drop down menu “Window”
= Select “Show View”
= Click “Error Log”

= If the error log contains the following error, restart Eclipse:

JTS Users Guide, Ver 2.0 Copyright 2013 Page 256 of 265

¢ JAUS

tool set

org.eclipse.xtext.builder.impl.XtextBuilder

- Passed org.eclipse.xtext.resource.IResourceDescriptions not of type

org.eclipse.xtext.resource.impl.ResourceSetBasedResourceDescriptions

21.4.4.2 Errors within the editor
If there has been an error with converting CJSIDL to or from JSIDL or with the code or document
generators, it is possible that the error has disrupted the workspace and affected the

functionality of the editor.
To resolve the issue, there are two steps. In most cases the first should resolve the problem.

1. Clean the project
2. Restart Eclipse

21.44.3 Errors converting JSIDL
When importing or exporting JSIDL, it is necessary to restart Eclipse. CJSIDL to JSIDL
conversion is used in all functions in the JST menu, and a restart is required after running them.

For full details, please refer to the Developer’s Manual.
If Eclipse is not restarted, Eclipse will begin logging errors as described in section 21.4.4.1.

If the plug-in is unable to import the JSIDL, confirm that the JSIDL is 1.1 and not 1.0, as 1.0 will

cause errors when being unmarshalled.

If the JSIDL being imported has several layers of states that have duplicate names, it is
necessary to rename them to have unigue IDs. Otherwise there will be problems with the parser

being able to differentiate between identically named states.

21.4.4.4 Errors with generating code, documents, or JSIDL
When performing any of the functions under the JTS menu, the converter is called to create
JSIDL bindings. This uses the same workaround discussed in the Developer's Manual that

requires a restart of Eclipse.

If there are any errors other than the pop up alert regarding the conversion, please confirm that

the data in the project is valid.

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 257 of 265

tool set

i JAUS

21.5 CJSIDL Integration with JTS

In order to simplify the workflow between JTS and the Eclipse plug-in, the ability to import and
export CJSIDL has been integrated into the JTS GUI.

21.5.1 Import

CJSIDL can be imported into JTS by right clicking on the Service Defs menu as shown in Figure

157. This figure also shows the popup menu.

Elle Types Help

¥, Browss
New

& Fne

Smar Ligt

Import CJSIDL

Select ¥ CJISIDL CSD file of direttory containing CISOL £SO fles, Men chek Impart
[mport From J8I0L |cuTe | | Browse | | Default |

[tmport | | camel |

A

.

Figure 157: Importing CJSIDL to JTS
Invalid CJSIDL will cause an error to be displayed and the import to fail.

21.5.2 Export

JTS can export JSIDL as CJSIDL for use in the Eclipse plug-in by right clicking on a service set
and selecting the menu option “Export to CJSIDL”. Figure 158 shows the location of the Export
to CJSIDL option and the pop up dialog.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 258 of 265

t.

“JAUS

tool set

~

File Types Help

) Model | @@ Service Sats (1) BE8

:&8 =0 Service Sets (1) = -

Compaonents

| senice SetName = | |contains || l Go l‘

41

Open

& Edit
.j @& Refresh ‘
Senvice Defs 38 Delete
@ ExportToJsiDL ‘

Generate Documentation
Export To C
Generate Promela Code

Message Defs

2

Complex Fields

&

Export ServiceDef to JSIDL
Simple Fields

Select an output file where the ServiceDefwill be exported as JSIDL, and click Export.

>

cuTS| Browse Default |
[| (J J

Protocal
Behaviors

[Export][Cancel |

Figure 158: Exporting CJSIDL from JTS

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 259 of 265

tool set

&1Aus

22 Appendix A—Command Line Input

Some modules in JTS can be used independently of the GUI through the command line. This section
breaks down the command line options for each module.

22.1 Code Generator

To call the code generator from the command line, use the following command from GUI/:

Command line options for the code generator include:

Table 10 Code Generator Command Line Options

Compiler option | Description Default value

--input, - i The path to the service set

--outdir, -0 The path to the generated output | creates a folder titled generatedOutput in
GuUl/

--name, -n The name of the component JAUSComponent

--id The component ID 1

--CH++ Generates C++ code

--java Generates Java code

--CS Generates C# code

So an example use would be:

ant run-code-generator -i examples/foo.xml -o /test/4 11 11/ -n TestCmpt -
id 200 -java

This will unmarshal the JSIDL foo.xml, the generated code will be placed in
GUI/test/4_11 11/TestCmpt_200, and the generated code will be in Java.

22.2 Document Generator

There are two ways to launch the document generator — through the command ant run-doc-
generator and directly through the Python script located in GUI/scripts. This script will properly call

JTS Users Guide, Ver 2.0 Copyright 2013 Page 260 of 265

tool set

& 1AUS

the more complex Ant task. These instructions are for the Python script, which is the recommended
means of invoking the document generator.

To launch the python command, run cd GUI/scripts to enter the scripts directory and run the
following command: python DocGeneratorCLI.py -o [DIR] [optional] --
[lhtml/fhtml/word] [service defs]

Note that [service defs] must be the path of at least one service definition JSIDL. Multiple files may be
listed, but attempting to use a service set or any other kind of JSIDL XML will cause errors.

The following table is a list of all available command line options for the document generator:

22.2.1.1.1.1.1 Table 11 Document Generator Command Line Options

Table 9 — Document Generator command line options

Compiler option Description Default Required
value
-0, --output [DIR] Specifies the output director for the generated document. | n/a Yes
--styleCust [DIR] The directory of a customized style sheet for the | n/a No
document. More information can be found in the JTS
User’s Guide.
--keeplntermeds A flag to specify if intermediate forms of generated | False No

documents used to create the final document should be
kept or deleted.

--lhtml Generates linear HTML output. n/a Yes
--fhtml Generatess framed HTML output. n/a Yes
--word Generates an MS Word document. n/a Yes

Please note that --lhtml, --fhtml, and —word are mutual exclusive. One must be selected, but only one
can be selected.

So, an example use in Windows would be:

cd GUI\scripts

python DocGeneratorCLI.py -0 “C:\document output” --styleCust
“C:\document style cuts” --word “C:\service defs\servicel.xml”

JTS User’s Guide, Ver 2.0 Copyright 2013 Page 261 of 265

2 JAUS

tool set

“C:\service defs\service2.xml”

Another exampel use in Linux would be:

cd GUI/scripts

python DocGeneratorCLI.py -0 ~/document output --styleCust
~/document style cuts --word ~/service defs/servicel.xml
~/service defs/service2.xml

22.3 Automated Testing Framework

The Automated Testing Framework (ATF) can be launched two ways, through the Ant build script or
directly through Python. A full explanation and list of command line options can be found in section
5.6 of the Developer’s Guide.

JTS Users Guide, Ver 2.0 Copyright 2013 Page 262 of 265

tool set

2 JAUS

23 Appendix B — Available Types and Units

This appendix contains a list of types and units that are available in the CJSIDL grammar.

23.1 Simple Numeric Type

uint8 int8 float

uint16 intl6 double

uint32 int32

uint64 int64

23.2 Field Formats

AU MP3 RNG

BMP MP4 User_defined
JAUS_MESSAGE MPEG-1 WAV

JPG MPEG-2 XML

MJIPEG RAW XSD

MP2 RNC

23.3 Units

ampere becquerel coulomb_per_square_meter
ampere_per_meter bel cubic_meter
ampere_per_square_meter candela cubic_meter_per_kilogram

angstrom
are

bar

barn

candela_per_square_meter
colulomb_per_cubic_meter
coulomb

coulomb_per_kilogram

curie

day

degree
degree_Celsius

JTS User’s Guide, Ver 2.0

Copyright 2013

Page 263 of 265

2 JAUS

tool set

farad

fared_per_meter
gray_per_second
hectare

henry
henry_per_meter

hertz

hour

joule
joule_per_cubic_meter
joule_per_kelvin
joule_per_kilogram
joule_per_mole
joule_per_mole_kelvin
katal
katal_per_cubic_meter
kelvin

kilogram
kilogram_per_cubic_meter

knot

liter

lumen

lux

meter
meter_per_second
meter_per_second_squared
metric_ton

minute

mole
mole_per_cubic_meter
nautical_mile

neper

newton

newton_meter
newton_per_meter
ohm

one

pascal

pascal_second

rad

radian

radian_per_second
radian_per_second_squared
reciprocal_meter

rem

roentgen

second

siemens

sievert

square_meter

steradian

tesla

volt_per_meter

volt

watt

watt_per_meter_kelvin
watt_per_square_meter
watt_per_square_meter_steradian

weber

JTS Users Guide, Ver 2.0

Copyright 2013

Page 264 of 265

tool set

& 1AUS

24 People and Copyrights

The alphabetically ordered list below contains names of developers and organizations that have

supported the development of JTS from its inception to release 2.0.

Alex Evans (WINTEC, Inc)

Arfath Pasha (WINTEC, Inc)

Chuck Messmer (Progeny Systems Corp)

Danny Kent (DTI)

Dave Martin (DeVivo AST)

Drew Lucas (University of Florida)

Eric Thorn (University of Florida)

Gina Nearing (Progeny Systems Corp)

lan Durkan (Progeny Systems Corp)

Jaehoon Lee (WINTEC, Inc)

Jean Francois Kamath (University of Florida)

Jim Albers (Fastpilot, Inc.)

Mark Bofill (DeVivo AST)

Nicholas Johnson (University of Florida)

Parag Batavia (Neya Systems)

Rich Ernst (OSD)

Tom Galluzzo

Support has been provided by the Office Under Secretary of Defense for Acquisition, Technolo-
gy & Logistics / Unmanned Warfare (OUSD (AT&L)/PSA-UW), Navy Program Executive Officer
Littoral and Mine Warfare (PEO LMW), PEO Unmanned Aviation and Strike Weapons (U&W),

Office Naval Research (ONR), and Air Force Research Lab (AFRL).

XMLmind XSL-FO Converter Copyright © 2002-2009 Pixware SARL

JTS User’s Guide, Ver 1.5 Copyright 2013 Page 265 of 265

