




• Intelligent Ground Vehicle Competition (IGVC) rules constitute our 
customer

• Our main requirements are:
• Parallelism

• Reliability

• Stability

• Interoperability

• Control flow and information flow provide the best ways for us to 
fulfill these requirements







• Reliability is a pivotal part of the operation of the vehicle
• Isolation Testing – Each module will be tested and expected to perform 

by itself
• Message testing – Each module must be able to communicate using the 

required messaging service (RabbitMQ) to successfully communicate 
with the server and other modules

• Software Integration testing will be performed when each module is 
finished
• Every software module will be tested with the other modules it interacts with
• Every software module available will then be tested at the same time

• Hardware integration
• Full testing of the entire system deployed before vehicle operation if possible
• Vehicle operation is the final stage of complete integration testing



• SBMPC Algorithm Implemented and tested using simple test cases
• Implemented in Java

• Underlying pathfinding algorithm: A star

• Basic test example: placing a single obstacle between the vehicle and the 
goal

• Supporting classes simulate an Ackerman steered vehicle
• Minimal code modification for application to other models

• Next steps
• Gui interface for designing test cases, visualizing results

• Performance analysis, optimizations



GUI

• JavaFX research done
• Understand API, idiosyncrasies

• Internal synchronization framework developed
• Must listen to messages, but also keep the "GUI thread" free

• Creation of basic window with all the sections as described in 
requirements doc
• Ugly and barebones, no functionality

• Minimal work done
• Pathfinding has been the priority thus far



• Completed integration of the ZED with the NVIDIA TX1 after 
communicating with the vendor to receive firmware updates

• Initial sets of data collected from the ZED for analysis

• Researched potential algorithms for locating obstacles and doing 
basic line detection

• Set up environment for CUDA, OpenCV and PCL libraries

• Implementation of object detection and line following is in 
progress







Task Will Adam Chris Brent

Finished GUI 20 % 30% 20% 30%

Prototype Navigation 10% 40% 10% 40%

RabbitMQ C++ clients 
fully implemented

70% 10% 10% 10%

Sensor Position 
Estimation

20% 30% 30% 20%

Line following and basic 
obstacle detection

20% - 80% -

Prototype Control and 
IOP

30% 30% 10% 30%


