Milestone Three

FLORIDA TECH IGVC

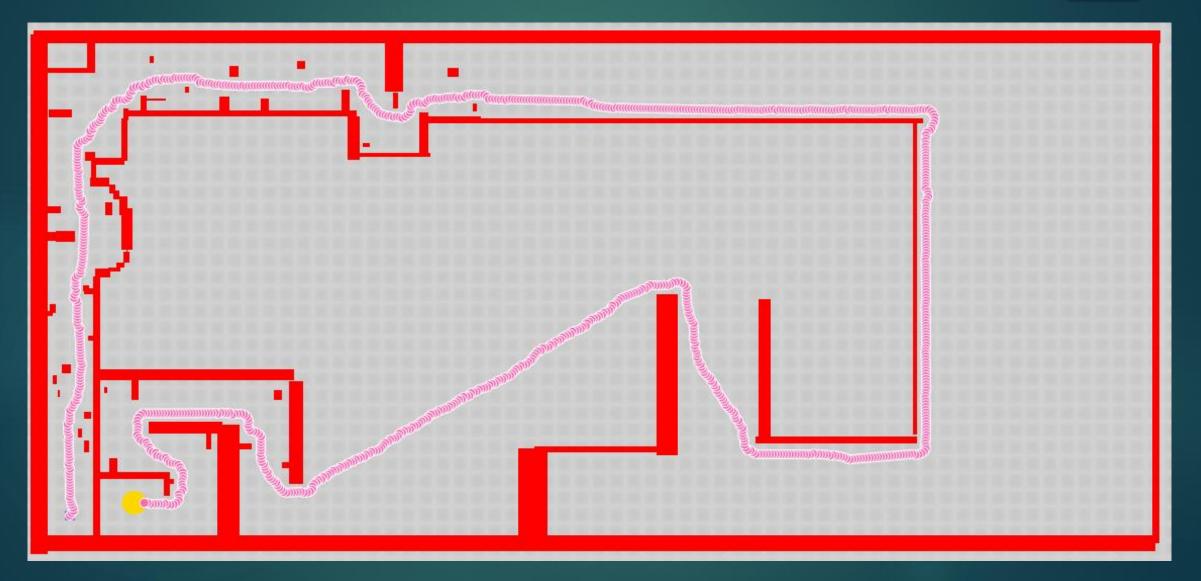
Milestone 3 Matrix

#	Task	Percentage	Will	Adam	Chris	Brent	To Do
1	Finished GUI	30	15	15	0	70	none
2	Optimized Navigation Algorithm	70	0	30	0	70	Improve time
3	RabbitMQ Clients for each software component	80	100	0	0	0	Motor control
4	Finished Line Following	90	0	0	100	0	Shading
5	LIDAR Integration	**	25	0	75	0	none
6	IOP Test Client	20	0	100	0	0	Understan d documen ts
7	IOP Nav Platform	20	0	100	0	0	Understan d documen ts
8	Control Component	20	50	50	0	0	Fill in states
9	Integration Testing MQ Clients and IOP	50	50	50	0	0	In progress
10	Integration Testing Components	50	25	25	25	25	Finish

Navigation

► Focus on understanding:

Impact of parameters on time / space complexity


- Branching Factor
- ► Vehicle Size
- ► Time Step
- Space complexity of map usage

Navigation

► Findings:

- Parameter: Branch factor
 - ► Affects runtime linearly
- Parameter: Vehicle size
 - Affects map representation size quadratically
- Parameter: Time Step
 - Doesn't really matter, except that optimal values increase accuracy
- Anticipated (complete) map representation size: ~5 megabytes
 - Not worth spending time optimizing
- Increased map resolution bogs down runtime
 - ► Halving a map's resolution cut runtime from ~9.5 to ~1.5 seconds!

Navigation: 1200x600 (and 600x300)

Navigation: Future Work

Understand, integrate LPA* algorithm to shorten re-compute time

Determine optimal parameters to keep runtime low

Vision

Edge detection in various lighting conditions at various angles

► Issues

Shading

► TODO

- Background deletion
- Luminescence calculations
- Polarizing lenses

Communication

- C++ multi-threaded communication client for GPS
- All individual Java RabbitMQ communication clients created
- Helped FSU design their software components
- Issues
 - There is a bug in the C++ AMQP library regarding publishing and receiving messages in the same thread

IOP

- Purchased three documents
- Have RelaxNG XML Schema for all 8 core services
 - Need to translate into usable Java code
 - Attempted using RelaxNGCC, however getting errors for unknown reasons
- Looking at using JAUS Toolset as an alternative
 - http://jaustoolset.org/

Milestone 4 Matrix

#	Task	Will	Adam	Chris	Brent
1	Finish Navigation	15	15	0	70
2	Standardize Message Formats	25	25	25	25
3	Vision & Motor Control RabbitMQ Clients	100	0	0	0
4	Line recognition and Obstacle recognition	0	0	100	0
5	Help FSU develop software	40	10	40	10
6	IOP Test Client	0	100	0	0
7	IOP Nav Platform	0	100	0	0
8	Control Component	33	33	0	33
9	Integrating Components and Integration Testing Components	25	25	25	25