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Introduction 
 

The Intelligent Ground Vehicle Competition (IGVC) is a 

challenge hosted by Oakland University. The competition 

promotes research and development on the problem of 

navigating unknown spaces autonomously. The goal of the 

competition is to complete an off-road course on grass. A 

team's vehicle must follow roads while intelligently avoiding 

obstacles using a variety of sensors. In addition to navigating 

through roads, the robot must find goals in free space and 

prioritize directions based on constraints. 

Florida Tech (FIT) is partnering with Florida State University (FSU) to produce a vehicle 

capable of winning the competition. Concerning software, Florida Tech is tasked with 

implementing pathfinding and motion planning, image processing, obstacle detection, inter-

process communication, a control unit, and a suite for satisfying SAE's JAUS standard. FSU is 

implementing a way to determine position with high accuracy and precision, as well as motor 

control and correction. FSU is also fabricating the robot. 

For the purpose of this design document, we will only discuss the design for components of the 

software that Florida Tech is responsible for. 

Overall Design Goals 
To support the desired functionality, several overarching computer science concepts must be 

discussed: 

 Concurrency 

 GPU Programming  

 Inter-process communication 

 Software testing 

 Modularity 
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Overall Software Architecture and Control 
List of subsystems: 

 Control:  Modify the state of subsystems and log the robot's behavior 

 Interoperability Platform Manager & Navigation:  Interact with outside entities for 

testing, simulation, and benchmarking 

 Pathfinding:  Conduct motion planning and pathfinding based on position and obstacle 

input 

 Position:  Calculate the vehicle's velocity, acceleration, heading, and location 

 Vision:  Identify roads and obstacles viewable by the robot's sensors 

 GUI:  Display the robot's performance 
 Motor Control:  Actualize motion planning by executing commands on motors 

The software system being created is complex and detailed. The detail required to discuss each 

class and module is too extensive for this document. However, when the code base has become 

more defined we will post a user manual, as well as Doxygen based documentation. 

There exist three important aspects of the system: control flow, information flow, and subsystem 

behavior. Combined, these aspects feed into the control subsystem and communication 

framework. 

One of the overarching goals is to maintain the independence of each subsystem in the software. 

Remote procedure calls may cause deadlocks, which are difficult to debug. Instead, the design 

focuses on the challenges. The ability of an outside entity to control the robot is paramount; 

however, having a software piece that responds to UDP requests and is actively trying to control 

the robot is complex. Therefore, separating interoperability from direct control of the robot is 

beneficial. With RabbitMQ, this separation only requires the creation of an additional publisher 

and subscriber. Additionally, separating control and interoperability allows the control flow to be 

maintained when an outside entity is not connected. 

Control Flow 

 

The control unit communicates with subordinate subsystems through RabbitMQ. Control mainly 

logs the behavior of the subsystems and interacts with subsystems on request from 

interoperability or to recover a subsystem. 
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Although control may not flow freely, information must. Several subsystems are primarily 

providers of information. The critical need for time-sensitive information forces Pathfinding and 

Motor Control to require information from Vision and Position, though the information itself is 

not critical. The GUI will also receive time-sensitive information, but only when that information 

is sent to another subsystem. 

Information Flow 

 

The main subsystems that need information are Pathfinding, the GUI, and Motor Control. Vision 

and Position are primarily providers; however, Position may need to provide information to both 

Motor Control, Vision, and Pathfinding on command. If Pathfinding runs fast enough, then the 

need for Position to report to Pathfinding and Motor Control diminishes slightly. 

Each individual subsystem will be constructed around a subscriber which listens for information 

from RabbitMQ. Focusing on the subscriber will allow the system to maintain independent 

execution and listening. Each subscriber will contain a publisher that the subsystem may use to 

respond to requests. Additional publishers within each subsystem may be created without 

limiting the performance of the communication framework. 

The particular structure of each subsystem is unique; however, the general structure is depicted 

below: 
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Each subsystem needs to parse all commands it receives. Parsing commands only needs to be 

implemented once per language in use. How those commands are handled after parsing depends 

on the subscriber. 

Control Software and Communication Framework 

 

 

RabbitMQ messaging server is the core of our communication framework, and will be under the 

direct control of the central control unit. RabbitMQ provides these features: 

 Non-blocking message sending 

 A standardized interface 

 Language independence 

 High throughput 
 Support for heartbeats 

The fact that RabbitMQ is non-blocking will allow the hardware driven components, such as 

computer vision, to be a simple producer of information; just passing the data along to the 

pathfinding subsystem instead of being concerned about messaging, timeouts and other more 

complicated IPC (Inter-process communication) mechanisms. This will also allow the 

pathfinding subsystem to process the information so that it can prioritize pieces of importance. 

This means that significant computation time taken for pathfinding does not have to be 

interrupted waiting on synchronized updates from, or to the other parts of the system. 

RabbitMQ Server has clients implemented in many languages, including Java and C++. The 

callback structure of RabbitMQ is preserved in all languages. In C++, additional tools, like 



Florida Tech IGVC 

5 

 

Boost's Asio library and ev.h (event handler with callbacks), must be used to support those 

callbacks. 

Ultimately, every subscriber implements a common set of methods.  

Steps in a subscriber: 

1. At initialization, the subscriber queue is bound to exchanges with the specified routing 

keys. 
2. Before consuming messages from exchanges, computations may be started in other 

threads. 

3. Consume is called once per exchange and routing key. The subscriber will receive 

messages until termination. 

4. On receiving a message, the subscriber calls handleDelivery, which parses the message 

into a string, which is then processed into a data type. 

5. Commands are executed based on a message header, denoting the command, and the 

system is updated. 
6. Once the command has been handled, the subscriber will again begin processing 

messages. Messages that arrive while the subscriber is busy are held in a queue. 
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At any point during the subscriber's execution, a message may be published. Often, the 

subscriber will publish in response to messages; however, messages may also be sent by the 

subsystem independently of the subscriber. 

Pathfinding 
 

 

The pathfinding component of the system will be comprised of a pathfinding algorithm, which 

will be taking inputs from the computer vision, hardware control, and position estimation 

components; and producing a set of actions for the robot to take. Each action consists of: 

 A linear speed (forwards or backward) 

 A duration for execution 

 Turning information (turning radius or angular velocity) 

The algorithm will create and update a map model based on messages sent from the computer 

vision module. At regular intervals, the pathfinding algorithm will re-compute the path to the 

goal, taking into account the most recent version of the map, and send the results to Motor 

Control. Each calculation produces a list of movement instructions, guiding the robot from its 

current position to the goal. 

Map Representation 
Because all space is assumed to be unoccupied until other information is given, the map will be 

represented by a function that maps coordinates to either a value (blocked), or nothing 

(unoccupied). This means that accessing information about a given coordinate, adding obstacles 

to the map, and removing obstacles from the map all occur in constant time. 
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SBMPC Algorithm 
 

The main algorithm that our pathfinding 

will execute is as follows: 

1. Sample the Control Space:  

Randomly choose samples from the given 

input that are feasible to navigate to within 

the robot's physical constraints. 

2. Generate the Neighbor Nodes:  

Integrate our system model with the 

control samples that were chosen in the 

previous step. This will help us determine 

where to place the neighbor nodes. 

3. Evaluate the Node Costs:  Use the 

popular A* pathfinding algorithm's 

heuristic method to determine the cost of 

traveling to each neighbor node. In our 

case, the heuristic will be the shortest 

distance. Insert these nodes with their costs 

into a min-heap priority queue. 

4. Select the Lowest Cost Node:  Choose the node that has the lowest cost (top of the 

priority queue). 

5. Check for Constraint Violations:  Check to make sure that the robot really can get to 

the chosen node using the known physical restraints again. If no constraints are violated, 

then travel to the node. 

6. Check for Completion:  If the current node is the same as the goal then stop. If not, go 

back to step 1. 

GUI Interface 
 

The following image is a mockup of the GUI interface for use during simulations. On the top left 

is the incomplete map that the robot's pathfinding module has created, while the top right is the 

complete map the simulation has produced. Along the bottom, we have a detailed log of GUI 

commands as they occur in real time, a panel of robot metrics, the information from the most 

recent "Frame" (collection of data) received by the GUI, and buttons used for various user 

"interrupts" of the simulation. 
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All other GUI interfaces will be some variation of this general format. 
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Computer Vision 
 

The primary need for vision is navigation. While traversing the course, the vehicle must locate 

and understand the different types of terrain, obstacles, objectives and course boundary lines it 

encounters. For this purpose, we have selected the ZED stereoscopic camera, supported by 

LIDAR. The ZED provides us with: 

 Variable frame rate for capturing data 

 GPU interoperability 

 Point Cloud data for each frame 

 20-meter effective image range 

 Depth and color perception 

The ZED will produce a large quantity of image data for each frame. This requires a large 

amount of processing to locate objects. The TX1 board that the ZED will be operating with 

contains a powerful NVIDIA GPU that will be pivotal in processing the data returned in a timely 

manner. We have investigated implementations using the OpenCV and/or PCL libraries. 

Currently, PCL (Point Cloud Library) is the primary library involved in the implementation. PCL 

takes information in a point cloud format. Point cloud format consists of a set of points relative 

to the stereoscopic camera's current position, each containing information on the Cartesian 

coordinates and color of the point. PCL is capable of transforming and reducing point clouds 

using a variety of image processing algorithms. These will provide us with the ability to filter 

image data and identify clusters of points (obstacles).  

Below is a sample of the data that the ZED produces: 

 X-Axis Y-Axis Z-Axis Red  Green Blue 

-2706.072510 -1526.048218 2703.730957 67 67 64 

-2699.805664 -1524.747559 2701.426758 67 67 64 

 

From test data that we have captured, we have found that we get over 900,000 points represented 

in the previously described form per frame for 720p frame captures. PCL will be leveraged to 

process these large amounts of data. 

Some of the algorithms already existing in PCL that are applicable include: 

 PassThrough filter  

 Noise reduction and removal 

 Statistical Outlier Removal Noise reduction and removal  

 Down-sampling Centroiding algorithm to assist in locating potential objects 

The final piece of data generated by the ZED is a depth image map, which will be utilized in 

conjunction with the information generated using PCL, to then estimate ranges of objects located 

using the Point Cloud data. 
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Ideally, these operations will take place on the GPU as much as possible to take advantage of the 

massively parallel computations that are possible on the GPU. The processing will have to put 

some data in, and copy some information out to finalize the analysis, however, this will be kept 

as minimal as possible to not burden the TX1 system. Not only will the GPU-leveraged 

computations speed up analysis, it will free up potentially large amounts of system resources for 

use by the other pieces of the system. 

 


